arm-trusted-firmware/drivers/nxp/ddr/nxp-ddr/ddr.c

932 lines
20 KiB
C

/*
* Copyright 2021 NXP
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <errno.h>
#include <inttypes.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <common/debug.h>
#include <ddr.h>
#ifndef CONFIG_DDR_NODIMM
#include <i2c.h>
#endif
#include <nxp_timer.h>
struct dynamic_odt {
unsigned int odt_rd_cfg;
unsigned int odt_wr_cfg;
unsigned int odt_rtt_norm;
unsigned int odt_rtt_wr;
};
#ifndef CONFIG_STATIC_DDR
#if defined(PHY_GEN2_FW_IMAGE_BUFFER) && !defined(NXP_DDR_PHY_GEN2)
#error Missing NXP_DDR_PHY_GEN2
#endif
#ifdef NXP_DDR_PHY_GEN2
static const struct dynamic_odt single_D[4] = {
{ /* cs0 */
DDR_ODT_NEVER,
DDR_ODT_ALL,
DDR4_RTT_80_OHM,
DDR4_RTT_WR_OFF
},
{ /* cs1 */
DDR_ODT_NEVER,
DDR_ODT_NEVER,
DDR4_RTT_OFF,
DDR4_RTT_WR_OFF
},
{},
{}
};
static const struct dynamic_odt single_S[4] = {
{ /* cs0 */
DDR_ODT_NEVER,
DDR_ODT_ALL,
DDR4_RTT_80_OHM,
DDR4_RTT_WR_OFF
},
{},
{},
{},
};
static const struct dynamic_odt dual_DD[4] = {
{ /* cs0 */
DDR_ODT_OTHER_DIMM,
DDR_ODT_ALL,
DDR4_RTT_60_OHM,
DDR4_RTT_WR_240_OHM
},
{ /* cs1 */
DDR_ODT_OTHER_DIMM,
DDR_ODT_ALL,
DDR4_RTT_60_OHM,
DDR4_RTT_WR_240_OHM
},
{ /* cs2 */
DDR_ODT_OTHER_DIMM,
DDR_ODT_ALL,
DDR4_RTT_60_OHM,
DDR4_RTT_WR_240_OHM
},
{ /* cs3 */
DDR_ODT_OTHER_DIMM,
DDR_ODT_ALL,
DDR4_RTT_60_OHM,
DDR4_RTT_WR_240_OHM
}
};
static const struct dynamic_odt dual_SS[4] = {
{ /* cs0 */
DDR_ODT_NEVER,
DDR_ODT_ALL,
DDR4_RTT_80_OHM,
DDR4_RTT_WR_OFF
},
{},
{ /* cs2 */
DDR_ODT_NEVER,
DDR_ODT_ALL,
DDR4_RTT_80_OHM,
DDR4_RTT_WR_OFF
},
{}
};
static const struct dynamic_odt dual_D0[4] = {
{ /* cs0 */
DDR_ODT_NEVER,
DDR_ODT_SAME_DIMM,
DDR4_RTT_80_OHM,
DDR4_RTT_WR_OFF
},
{ /* cs1 */
DDR_ODT_NEVER,
DDR_ODT_NEVER,
DDR4_RTT_80_OHM,
DDR4_RTT_WR_OFF
},
{},
{}
};
static const struct dynamic_odt dual_S0[4] = {
{ /* cs0 */
DDR_ODT_NEVER,
DDR_ODT_CS,
DDR4_RTT_80_OHM,
DDR4_RTT_WR_OFF
},
{},
{},
{}
};
#else
static const struct dynamic_odt single_D[4] = {
{ /* cs0 */
DDR_ODT_NEVER,
DDR_ODT_ALL,
DDR4_RTT_40_OHM,
DDR4_RTT_WR_OFF
},
{ /* cs1 */
DDR_ODT_NEVER,
DDR_ODT_NEVER,
DDR4_RTT_OFF,
DDR4_RTT_WR_OFF
},
{},
{}
};
static const struct dynamic_odt single_S[4] = {
{ /* cs0 */
DDR_ODT_NEVER,
DDR_ODT_ALL,
DDR4_RTT_40_OHM,
DDR4_RTT_WR_OFF
},
{},
{},
{},
};
static const struct dynamic_odt dual_DD[4] = {
{ /* cs0 */
DDR_ODT_NEVER,
DDR_ODT_SAME_DIMM,
DDR4_RTT_120_OHM,
DDR4_RTT_WR_OFF
},
{ /* cs1 */
DDR_ODT_OTHER_DIMM,
DDR_ODT_OTHER_DIMM,
DDR4_RTT_34_OHM,
DDR4_RTT_WR_OFF
},
{ /* cs2 */
DDR_ODT_NEVER,
DDR_ODT_SAME_DIMM,
DDR4_RTT_120_OHM,
DDR4_RTT_WR_OFF
},
{ /* cs3 */
DDR_ODT_OTHER_DIMM,
DDR_ODT_OTHER_DIMM,
DDR4_RTT_34_OHM,
DDR4_RTT_WR_OFF
}
};
static const struct dynamic_odt dual_SS[4] = {
{ /* cs0 */
DDR_ODT_OTHER_DIMM,
DDR_ODT_ALL,
DDR4_RTT_34_OHM,
DDR4_RTT_WR_120_OHM
},
{},
{ /* cs2 */
DDR_ODT_OTHER_DIMM,
DDR_ODT_ALL,
DDR4_RTT_34_OHM,
DDR4_RTT_WR_120_OHM
},
{}
};
static const struct dynamic_odt dual_D0[4] = {
{ /* cs0 */
DDR_ODT_NEVER,
DDR_ODT_SAME_DIMM,
DDR4_RTT_40_OHM,
DDR4_RTT_WR_OFF
},
{ /* cs1 */
DDR_ODT_NEVER,
DDR_ODT_NEVER,
DDR4_RTT_OFF,
DDR4_RTT_WR_OFF
},
{},
{}
};
static const struct dynamic_odt dual_S0[4] = {
{ /* cs0 */
DDR_ODT_NEVER,
DDR_ODT_CS,
DDR4_RTT_40_OHM,
DDR4_RTT_WR_OFF
},
{},
{},
{}
};
#endif /* NXP_DDR_PHY_GEN2 */
/*
* Automatically select bank interleaving mode based on DIMMs
* in this order: cs0_cs1_cs2_cs3, cs0_cs1, null.
* This function only deal with one or two slots per controller.
*/
static inline unsigned int auto_bank_intlv(const int cs_in_use,
const struct dimm_params *pdimm)
{
switch (cs_in_use) {
case 0xf:
return DDR_BA_INTLV_CS0123;
case 0x3:
return DDR_BA_INTLV_CS01;
case 0x1:
return DDR_BA_NONE;
case 0x5:
return DDR_BA_NONE;
default:
break;
}
return 0U;
}
static int cal_odt(const unsigned int clk,
struct memctl_opt *popts,
struct ddr_conf *conf,
struct dimm_params *pdimm,
const int dimm_slot_per_ctrl)
{
unsigned int i;
const struct dynamic_odt *pdodt = NULL;
const static struct dynamic_odt *table[2][5] = {
{single_S, single_D, NULL, NULL},
{dual_SS, dual_DD, NULL, NULL},
};
if (dimm_slot_per_ctrl != 1 && dimm_slot_per_ctrl != 2) {
ERROR("Unsupported number of DIMMs\n");
return -EINVAL;
}
pdodt = table[dimm_slot_per_ctrl - 1][pdimm->n_ranks - 1];
if (pdodt == dual_SS) {
pdodt = (conf->cs_in_use == 0x5) ? dual_SS :
((conf->cs_in_use == 0x1) ? dual_S0 : NULL);
} else if (pdodt == dual_DD) {
pdodt = (conf->cs_in_use == 0xf) ? dual_DD :
((conf->cs_in_use == 0x3) ? dual_D0 : NULL);
}
if (pdodt == dual_DD && pdimm->package_3ds) {
ERROR("Too many 3DS DIMMs.\n");
return -EINVAL;
}
if (pdodt == NULL) {
ERROR("Error determing ODT.\n");
return -EINVAL;
}
/* Pick chip-select local options. */
for (i = 0U; i < DDRC_NUM_CS; i++) {
debug("cs %d\n", i);
popts->cs_odt[i].odt_rd_cfg = pdodt[i].odt_rd_cfg;
debug(" odt_rd_cfg 0x%x\n",
popts->cs_odt[i].odt_rd_cfg);
popts->cs_odt[i].odt_wr_cfg = pdodt[i].odt_wr_cfg;
debug(" odt_wr_cfg 0x%x\n",
popts->cs_odt[i].odt_wr_cfg);
popts->cs_odt[i].odt_rtt_norm = pdodt[i].odt_rtt_norm;
debug(" odt_rtt_norm 0x%x\n",
popts->cs_odt[i].odt_rtt_norm);
popts->cs_odt[i].odt_rtt_wr = pdodt[i].odt_rtt_wr;
debug(" odt_rtt_wr 0x%x\n",
popts->cs_odt[i].odt_rtt_wr);
popts->cs_odt[i].auto_precharge = 0;
debug(" auto_precharge %d\n",
popts->cs_odt[i].auto_precharge);
}
return 0;
}
static int cal_opts(const unsigned int clk,
struct memctl_opt *popts,
struct ddr_conf *conf,
struct dimm_params *pdimm,
const int dimm_slot_per_ctrl,
const unsigned int ip_rev)
{
popts->rdimm = pdimm->rdimm;
popts->mirrored_dimm = pdimm->mirrored_dimm;
#ifdef CONFIG_DDR_ECC_EN
popts->ecc_mode = pdimm->edc_config == 0x02 ? 1 : 0;
#endif
popts->ctlr_init_ecc = popts->ecc_mode;
debug("ctlr_init_ecc %d\n", popts->ctlr_init_ecc);
popts->self_refresh_in_sleep = 1;
popts->dynamic_power = 0;
/*
* check sdram width, allow platform override
* 0 = 64-bit, 1 = 32-bit, 2 = 16-bit
*/
if (pdimm->primary_sdram_width == 64) {
popts->data_bus_dimm = DDR_DBUS_64;
popts->otf_burst_chop_en = 1;
} else if (pdimm->primary_sdram_width == 32) {
popts->data_bus_dimm = DDR_DBUS_32;
popts->otf_burst_chop_en = 0;
} else if (pdimm->primary_sdram_width == 16) {
popts->data_bus_dimm = DDR_DBUS_16;
popts->otf_burst_chop_en = 0;
} else {
ERROR("primary sdram width invalid!\n");
return -EINVAL;
}
popts->data_bus_used = popts->data_bus_dimm;
popts->x4_en = (pdimm->device_width == 4) ? 1 : 0;
debug("x4_en %d\n", popts->x4_en);
/* for RDIMM and DDR4 UDIMM/discrete memory, address parity enable */
if (popts->rdimm != 0) {
popts->ap_en = 1; /* 0 = disable, 1 = enable */
} else {
popts->ap_en = 0; /* disabled for DDR4 UDIMM/discrete default */
}
if (ip_rev == 0x50500) {
popts->ap_en = 0;
}
debug("ap_en %d\n", popts->ap_en);
/* BSTTOPRE precharge interval uses 1/4 of refint value. */
popts->bstopre = picos_to_mclk(clk, pdimm->refresh_rate_ps) >> 2;
popts->tfaw_ps = pdimm->tfaw_ps;
return 0;
}
static void cal_intlv(const int num_ctlrs,
struct memctl_opt *popts,
struct ddr_conf *conf,
struct dimm_params *pdimm)
{
#ifdef NXP_DDR_INTLV_256B
if (num_ctlrs == 2) {
popts->ctlr_intlv = 1;
popts->ctlr_intlv_mode = DDR_256B_INTLV;
}
#endif
debug("ctlr_intlv %d\n", popts->ctlr_intlv);
debug("ctlr_intlv_mode %d\n", popts->ctlr_intlv_mode);
popts->ba_intlv = auto_bank_intlv(conf->cs_in_use, pdimm);
debug("ba_intlv 0x%x\n", popts->ba_intlv);
}
static int update_burst_length(struct memctl_opt *popts)
{
/* Choose burst length. */
if ((popts->data_bus_used == DDR_DBUS_32) ||
(popts->data_bus_used == DDR_DBUS_16)) {
/* 32-bit or 16-bit bus */
popts->otf_burst_chop_en = 0;
popts->burst_length = DDR_BL8;
} else if (popts->otf_burst_chop_en != 0) { /* on-the-fly burst chop */
popts->burst_length = DDR_OTF; /* on-the-fly BC4 and BL8 */
} else {
popts->burst_length = DDR_BL8;
}
debug("data_bus_used %d\n", popts->data_bus_used);
debug("otf_burst_chop_en %d\n", popts->otf_burst_chop_en);
debug("burst_length 0x%x\n", popts->burst_length);
/*
* If a reduced data width is requested, but the SPD
* specifies a physically wider device, adjust the
* computed dimm capacities accordingly before
* assigning addresses.
* 0 = 64-bit, 1 = 32-bit, 2 = 16-bit
*/
if (popts->data_bus_dimm > popts->data_bus_used) {
ERROR("Data bus configuration error\n");
return -EINVAL;
}
popts->dbw_cap_shift = popts->data_bus_used - popts->data_bus_dimm;
debug("dbw_cap_shift %d\n", popts->dbw_cap_shift);
return 0;
}
int cal_board_params(struct ddr_info *priv,
const struct board_timing *dimm,
int len)
{
const unsigned long speed = priv->clk / 1000000;
const struct dimm_params *pdimm = &priv->dimm;
struct memctl_opt *popts = &priv->opt;
struct rc_timing const *prt = NULL;
struct rc_timing const *chosen = NULL;
int i;
for (i = 0; i < len; i++) {
if (pdimm->rc == dimm[i].rc) {
prt = dimm[i].p;
break;
}
}
if (prt == NULL) {
ERROR("Board parameters no match.\n");
return -EINVAL;
}
while (prt->speed_bin != 0) {
if (speed <= prt->speed_bin) {
chosen = prt;
break;
}
prt++;
}
if (chosen == NULL) {
ERROR("timing no match for speed %lu\n", speed);
return -EINVAL;
}
popts->clk_adj = prt->clk_adj;
popts->wrlvl_start = prt->wrlvl;
popts->wrlvl_ctl_2 = (prt->wrlvl * 0x01010101 + dimm[i].add1) &
0xFFFFFFFF;
popts->wrlvl_ctl_3 = (prt->wrlvl * 0x01010101 + dimm[i].add2) &
0xFFFFFFFF;
return 0;
}
static int synthesize_ctlr(struct ddr_info *priv)
{
int ret;
ret = cal_odt(priv->clk,
&priv->opt,
&priv->conf,
&priv->dimm,
priv->dimm_on_ctlr);
if (ret != 0) {
return ret;
}
ret = cal_opts(priv->clk,
&priv->opt,
&priv->conf,
&priv->dimm,
priv->dimm_on_ctlr,
priv->ip_rev);
if (ret != 0) {
return ret;
}
cal_intlv(priv->num_ctlrs, &priv->opt, &priv->conf, &priv->dimm);
ret = ddr_board_options(priv);
if (ret != 0) {
ERROR("Failed matching board timing.\n");
}
ret = update_burst_length(&priv->opt);
return ret;
}
/* Return the bit mask of valid DIMMs found */
static int parse_spd(struct ddr_info *priv)
{
struct ddr_conf *conf = &priv->conf;
struct dimm_params *dimm = &priv->dimm;
int j, valid_mask = 0;
#ifdef CONFIG_DDR_NODIMM
valid_mask = ddr_get_ddr_params(dimm, conf);
if (valid_mask < 0) {
ERROR("DDR params error\n");
return valid_mask;
}
#else
const int *spd_addr = priv->spd_addr;
const int num_ctlrs = priv->num_ctlrs;
const int num_dimm = priv->dimm_on_ctlr;
struct ddr4_spd spd[2];
unsigned int spd_checksum[2];
int addr_idx = 0;
int spd_idx = 0;
int ret, addr, i;
/* Scan all DIMMs */
for (i = 0; i < num_ctlrs; i++) {
debug("Controller %d\n", i);
for (j = 0; j < num_dimm; j++, addr_idx++) {
debug("DIMM %d\n", j);
addr = spd_addr[addr_idx];
if (addr == 0) {
if (j == 0) {
ERROR("First SPD addr wrong.\n");
return -EINVAL;
}
continue;
}
debug("addr 0x%x\n", addr);
ret = read_spd(addr, &spd[spd_idx],
sizeof(struct ddr4_spd));
if (ret != 0) { /* invalid */
debug("Invalid SPD at address 0x%x\n", addr);
continue;
}
spd_checksum[spd_idx] =
(spd[spd_idx].crc[1] << 24) |
(spd[spd_idx].crc[0] << 16) |
(spd[spd_idx].mod_section.uc[127] << 8) |
(spd[spd_idx].mod_section.uc[126] << 0);
debug("checksum 0x%x\n", spd_checksum[spd_idx]);
if (spd_checksum[spd_idx] == 0) {
debug("Bad checksum, ignored.\n");
continue;
}
if (spd_idx == 0) {
/* first valid SPD */
ret = cal_dimm_params(&spd[0], dimm);
if (ret != 0) {
ERROR("SPD calculation error\n");
return -EINVAL;
}
}
if (spd_idx != 0 && spd_checksum[0] !=
spd_checksum[spd_idx]) {
ERROR("Not identical DIMMs.\n");
return -EINVAL;
}
conf->dimm_in_use[j] = 1;
valid_mask |= 1 << addr_idx;
spd_idx = 1;
}
debug("done with controller %d\n", i);
}
switch (num_ctlrs) {
case 1:
if ((valid_mask & 0x1) == 0) {
ERROR("First slot cannot be empty.\n");
return -EINVAL;
}
break;
case 2:
switch (num_dimm) {
case 1:
if (valid_mask == 0) {
ERROR("Both slot empty\n");
return -EINVAL;
}
break;
case 2:
if (valid_mask != 0x5 &&
valid_mask != 0xf &&
(valid_mask & 0x7) != 0x4 &&
(valid_mask & 0xd) != 0x1) {
ERROR("Invalid DIMM combination.\n");
return -EINVAL;
}
break;
default:
ERROR("Invalid number of DIMMs.\n");
return -EINVAL;
}
break;
default:
ERROR("Invalid number of controllers.\n");
return -EINVAL;
}
/* now we have valid and identical DIMMs on controllers */
#endif /* CONFIG_DDR_NODIMM */
debug("cal cs\n");
conf->cs_in_use = 0;
for (j = 0; j < DDRC_NUM_DIMM; j++) {
if (conf->dimm_in_use[j] == 0) {
continue;
}
switch (dimm->n_ranks) {
case 4:
ERROR("Quad-rank DIMM not supported\n");
return -EINVAL;
case 2:
conf->cs_on_dimm[j] = 0x3 << (j * CONFIG_CS_PER_SLOT);
conf->cs_in_use |= conf->cs_on_dimm[j];
break;
case 1:
conf->cs_on_dimm[j] = 0x1 << (j * CONFIG_CS_PER_SLOT);
conf->cs_in_use |= conf->cs_on_dimm[j];
break;
default:
ERROR("SPD error with n_ranks\n");
return -EINVAL;
}
debug("cs_in_use = %x\n", conf->cs_in_use);
debug("cs_on_dimm[%d] = %x\n", j, conf->cs_on_dimm[j]);
}
#ifndef CONFIG_DDR_NODIMM
if (priv->dimm.rdimm != 0) {
NOTICE("RDIMM %s\n", priv->dimm.mpart);
} else {
NOTICE("UDIMM %s\n", priv->dimm.mpart);
}
#else
NOTICE("%s\n", priv->dimm.mpart);
#endif
return valid_mask;
}
static unsigned long long assign_intlv_addr(
const struct dimm_params *pdimm,
const struct memctl_opt *opt,
struct ddr_conf *conf,
const unsigned long long current_mem_base)
{
int i;
int ctlr_density_mul = 0;
const unsigned long long rank_density = pdimm->rank_density >>
opt->dbw_cap_shift;
unsigned long long total_ctlr_mem;
debug("rank density 0x%llx\n", rank_density);
switch (opt->ba_intlv & DDR_BA_INTLV_CS0123) {
case DDR_BA_INTLV_CS0123:
ctlr_density_mul = 4;
break;
case DDR_BA_INTLV_CS01:
ctlr_density_mul = 2;
break;
default:
ctlr_density_mul = 1;
break;
}
debug("ctlr density mul %d\n", ctlr_density_mul);
switch (opt->ctlr_intlv_mode) {
case DDR_256B_INTLV:
total_ctlr_mem = 2 * ctlr_density_mul * rank_density;
break;
default:
ERROR("Unknown interleaving mode");
return 0;
}
conf->base_addr = current_mem_base;
conf->total_mem = total_ctlr_mem;
/* overwrite cs_in_use bitmask with controller interleaving */
conf->cs_in_use = (1 << ctlr_density_mul) - 1;
debug("Overwrite cs_in_use as %x\n", conf->cs_in_use);
/* Fill addr with each cs in use */
for (i = 0; i < ctlr_density_mul; i++) {
conf->cs_base_addr[i] = current_mem_base;
conf->cs_size[i] = total_ctlr_mem;
debug("CS %d\n", i);
debug(" base_addr 0x%llx\n", conf->cs_base_addr[i]);
debug(" size 0x%llx\n", conf->cs_size[i]);
}
return total_ctlr_mem;
}
static unsigned long long assign_non_intlv_addr(
const struct dimm_params *pdimm,
const struct memctl_opt *opt,
struct ddr_conf *conf,
unsigned long long current_mem_base)
{
int i;
const unsigned long long rank_density = pdimm->rank_density >>
opt->dbw_cap_shift;
unsigned long long total_ctlr_mem = 0ULL;
debug("rank density 0x%llx\n", rank_density);
conf->base_addr = current_mem_base;
/* assign each cs */
switch (opt->ba_intlv & DDR_BA_INTLV_CS0123) {
case DDR_BA_INTLV_CS0123:
for (i = 0; i < DDRC_NUM_CS; i++) {
conf->cs_base_addr[i] = current_mem_base;
conf->cs_size[i] = rank_density << 2;
total_ctlr_mem += rank_density;
}
break;
case DDR_BA_INTLV_CS01:
for (i = 0; ((conf->cs_in_use & (1 << i)) != 0) && i < 2; i++) {
conf->cs_base_addr[i] = current_mem_base;
conf->cs_size[i] = rank_density << 1;
total_ctlr_mem += rank_density;
}
current_mem_base += total_ctlr_mem;
for (; ((conf->cs_in_use & (1 << i)) != 0) && i < DDRC_NUM_CS;
i++) {
conf->cs_base_addr[i] = current_mem_base;
conf->cs_size[i] = rank_density;
total_ctlr_mem += rank_density;
current_mem_base += rank_density;
}
break;
case DDR_BA_NONE:
for (i = 0; ((conf->cs_in_use & (1 << i)) != 0) &&
(i < DDRC_NUM_CS); i++) {
conf->cs_base_addr[i] = current_mem_base;
conf->cs_size[i] = rank_density;
current_mem_base += rank_density;
total_ctlr_mem += rank_density;
}
break;
default:
ERROR("Unsupported bank interleaving\n");
return 0;
}
for (i = 0; ((conf->cs_in_use & (1 << i)) != 0) &&
(i < DDRC_NUM_CS); i++) {
debug("CS %d\n", i);
debug(" base_addr 0x%llx\n", conf->cs_base_addr[i]);
debug(" size 0x%llx\n", conf->cs_size[i]);
}
return total_ctlr_mem;
}
unsigned long long assign_addresses(struct ddr_info *priv)
__attribute__ ((weak));
unsigned long long assign_addresses(struct ddr_info *priv)
{
struct memctl_opt *opt = &priv->opt;
const struct dimm_params *dimm = &priv->dimm;
struct ddr_conf *conf = &priv->conf;
unsigned long long current_mem_base = priv->mem_base;
unsigned long long total_mem;
total_mem = 0ULL;
debug("ctlr_intlv %d\n", opt->ctlr_intlv);
if (opt->ctlr_intlv != 0) {
total_mem = assign_intlv_addr(dimm, opt, conf,
current_mem_base);
} else {
/*
* Simple linear assignment if memory controllers are not
* interleaved. This is only valid for SoCs with single DDRC.
*/
total_mem = assign_non_intlv_addr(dimm, opt, conf,
current_mem_base);
}
conf->total_mem = total_mem;
debug("base 0x%llx\n", current_mem_base);
debug("Total mem by assignment is 0x%llx\n", total_mem);
return total_mem;
}
static int cal_ddrc_regs(struct ddr_info *priv)
{
int ret;
ret = compute_ddrc(priv->clk,
&priv->opt,
&priv->conf,
&priv->ddr_reg,
&priv->dimm,
priv->ip_rev);
if (ret != 0) {
ERROR("Calculating DDR registers failed\n");
}
return ret;
}
#endif /* CONFIG_STATIC_DDR */
static int write_ddrc_regs(struct ddr_info *priv)
{
int i;
int ret;
for (i = 0; i < priv->num_ctlrs; i++) {
ret = ddrc_set_regs(priv->clk, &priv->ddr_reg, priv->ddr[i], 0);
if (ret != 0) {
ERROR("Writing DDR register(s) failed\n");
return ret;
}
}
return 0;
}
long long dram_init(struct ddr_info *priv
#if defined(NXP_HAS_CCN504) || defined(NXP_HAS_CCN508)
, uintptr_t nxp_ccn_hn_f0_addr
#endif
)
{
uint64_t time __unused;
long long dram_size;
int ret;
const uint64_t time_base = get_timer_val(0);
unsigned int ip_rev = get_ddrc_version(priv->ddr[0]);
int valid_spd_mask __unused;
int scratch = 0x0;
priv->ip_rev = ip_rev;
#ifndef CONFIG_STATIC_DDR
INFO("time base %" PRIu64 " ms\n", time_base);
debug("Parse DIMM SPD(s)\n");
valid_spd_mask = parse_spd(priv);
if (valid_spd_mask < 0) {
ERROR("Parsing DIMM Error\n");
return valid_spd_mask;
}
#if defined(NXP_HAS_CCN504) || defined(NXP_HAS_CCN508)
if (priv->num_ctlrs == 2 || priv->num_ctlrs == 1) {
ret = disable_unused_ddrc(priv, valid_spd_mask,
nxp_ccn_hn_f0_addr);
if (ret != 0) {
return ret;
}
}
#endif
time = get_timer_val(time_base);
INFO("Time after parsing SPD %" PRIu64 " ms\n", time);
debug("Synthesize configurations\n");
ret = synthesize_ctlr(priv);
if (ret != 0) {
ERROR("Synthesize config error\n");
return ret;
}
debug("Assign binding addresses\n");
dram_size = assign_addresses(priv);
if (dram_size == 0) {
ERROR("Assigning address error\n");
return -EINVAL;
}
debug("Calculate controller registers\n");
ret = cal_ddrc_regs(priv);
if (ret != 0) {
ERROR("Calculate register error\n");
return ret;
}
ret = compute_ddr_phy(priv);
if (ret != 0)
ERROR("Calculating DDR PHY registers failed.\n");
#else
dram_size = board_static_ddr(priv);
if (dram_size == 0) {
ERROR("Error getting static DDR settings.\n");
return -EINVAL;
}
#endif
if (priv->warm_boot_flag == DDR_WARM_BOOT) {
scratch = (priv->ddr_reg).sdram_cfg[1];
scratch = scratch & ~(SDRAM_CFG2_D_INIT);
priv->ddr_reg.sdram_cfg[1] = scratch;
}
time = get_timer_val(time_base);
INFO("Time before programming controller %" PRIu64 " ms\n", time);
debug("Program controller registers\n");
ret = write_ddrc_regs(priv);
if (ret != 0) {
ERROR("Programing DDRC error\n");
return ret;
}
puts("");
NOTICE("%lld GB ", dram_size >> 30);
print_ddr_info(priv->ddr[0]);
time = get_timer_val(time_base);
INFO("Time used by DDR driver %" PRIu64 " ms\n", time);
return dram_size;
}