arm-trusted-firmware/plat/renesas/rzg/bl2_plat_setup.c

1021 lines
26 KiB
C

/*
* Copyright (c) 2020-2021, Renesas Electronics Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <inttypes.h>
#include <stdint.h>
#include <string.h>
#include <arch_helpers.h>
#include <bl1/bl1.h>
#include <common/bl_common.h>
#include <common/debug.h>
#include <common/desc_image_load.h>
#include <drivers/console.h>
#include <drivers/io/io_driver.h>
#include <drivers/io/io_storage.h>
#include <libfdt.h>
#include <lib/mmio.h>
#include <lib/xlat_tables/xlat_tables_defs.h>
#include <platform_def.h>
#include <plat/common/platform.h>
#include "avs_driver.h"
#include "board.h"
#include "boot_init_dram.h"
#include "cpg_registers.h"
#include "emmc_def.h"
#include "emmc_hal.h"
#include "emmc_std.h"
#include "io_common.h"
#include "io_rcar.h"
#include "qos_init.h"
#include "rcar_def.h"
#include "rcar_private.h"
#include "rcar_version.h"
#include "rom_api.h"
#define MAX_DRAM_CHANNELS 4
/*
* DDR ch0 has a shadow area mapped in 32bit address space.
* Physical address 0x4_0000_0000 - 0x4_7fff_ffff in 64bit space
* is mapped to 0x4000_0000 - 0xbfff_ffff in 32bit space.
*/
#define MAX_DRAM_SIZE_CH0_32BIT_ADDR_SPACE 0x80000000ULL
#if RCAR_BL2_DCACHE == 1
/*
* Following symbols are only used during plat_arch_setup() only
* when RCAR_BL2_DCACHE is enabled.
*/
static const uint64_t BL2_RO_BASE = BL_CODE_BASE;
static const uint64_t BL2_RO_LIMIT = BL_CODE_END;
#if USE_COHERENT_MEM
static const uint64_t BL2_COHERENT_RAM_BASE = BL_COHERENT_RAM_BASE;
static const uint64_t BL2_COHERENT_RAM_LIMIT = BL_COHERENT_RAM_END;
#endif /* USE_COHERENT_MEM */
#endif /* RCAR_BL2_DCACHE */
extern void plat_rcar_gic_driver_init(void);
extern void plat_rcar_gic_init(void);
extern void bl2_enter_bl31(const struct entry_point_info *bl_ep_info);
extern void bl2_system_cpg_init(void);
extern void bl2_secure_setting(void);
extern void bl2_cpg_init(void);
extern void rcar_io_emmc_setup(void);
extern void rcar_io_setup(void);
extern void rcar_swdt_release(void);
extern void rcar_swdt_init(void);
extern void rcar_rpc_init(void);
extern void rcar_dma_init(void);
extern void rzg_pfc_init(void);
static void bl2_init_generic_timer(void);
/* RZ/G2 product check */
#if RCAR_LSI == RZ_G2M
#define TARGET_PRODUCT PRR_PRODUCT_M3
#define TARGET_NAME "RZ/G2M"
#elif RCAR_LSI == RZ_G2H
#define TARGET_PRODUCT PRR_PRODUCT_H3
#define TARGET_NAME "RZ/G2H"
#elif RCAR_LSI == RZ_G2N
#define TARGET_PRODUCT PRR_PRODUCT_M3N
#define TARGET_NAME "RZ/G2N"
#elif RCAR_LSI == RZ_G2E
#define TARGET_PRODUCT PRR_PRODUCT_E3
#define TARGET_NAME "RZ/G2E"
#elif RCAR_LSI == RCAR_AUTO
#define TARGET_NAME "RZ/G2M"
#endif /* RCAR_LSI == RZ_G2M */
#if (RCAR_LSI == RZ_G2E)
#define GPIO_INDT (GPIO_INDT6)
#define GPIO_BKUP_TRG_SHIFT ((uint32_t)1U << 13U)
#else
#define GPIO_INDT (GPIO_INDT1)
#define GPIO_BKUP_TRG_SHIFT (1U << 8U)
#endif /* RCAR_LSI == RZ_G2E */
CASSERT((PARAMS_BASE + sizeof(bl2_to_bl31_params_mem_t) + 0x100)
< (RCAR_SHARED_MEM_BASE + RCAR_SHARED_MEM_SIZE),
assert_bl31_params_do_not_fit_in_shared_memory);
static meminfo_t bl2_tzram_layout __aligned(CACHE_WRITEBACK_GRANULE);
/* FDT with DRAM configuration */
uint64_t fdt_blob[PAGE_SIZE_4KB / sizeof(uint64_t)];
static void *fdt = (void *)fdt_blob;
static void unsigned_num_print(uint64_t unum, unsigned int radix, char *string)
{
/* Just need enough space to store 64 bit decimal integer */
char num_buf[20];
int i = 0;
unsigned int rem;
do {
rem = unum % radix;
if (rem < 0xaU) {
num_buf[i] = '0' + rem;
} else {
num_buf[i] = 'a' + (rem - 0xaU);
}
i++;
unum /= radix;
} while (unum > 0U);
while (--i >= 0) {
*string++ = num_buf[i];
}
*string = 0;
}
#if RCAR_LOSSY_ENABLE == 1
typedef struct bl2_lossy_info {
uint32_t magic;
uint32_t a0;
uint32_t b0;
} bl2_lossy_info_t;
static void bl2_lossy_gen_fdt(uint32_t no, uint64_t start_addr,
uint64_t end_addr, uint32_t format,
uint32_t enable, int fcnlnode)
{
const uint64_t fcnlsize = cpu_to_fdt64(end_addr - start_addr);
char nodename[40] = { 0 };
int ret, node;
/* Ignore undefined addresses */
if (start_addr == 0UL && end_addr == 0UL) {
return;
}
snprintf(nodename, sizeof(nodename), "lossy-decompression@");
unsigned_num_print(start_addr, 16, nodename + strlen(nodename));
node = ret = fdt_add_subnode(fdt, fcnlnode, nodename);
if (ret < 0) {
NOTICE("BL2: Cannot create FCNL node (ret=%i)\n", ret);
panic();
}
ret = fdt_setprop_string(fdt, node, "compatible",
"renesas,lossy-decompression");
if (ret < 0) {
NOTICE("BL2: Cannot add FCNL compat string %s (ret=%i)\n",
"renesas,lossy-decompression", ret);
panic();
}
ret = fdt_appendprop_string(fdt, node, "compatible",
"shared-dma-pool");
if (ret < 0) {
NOTICE("BL2: Cannot append FCNL compat string %s (ret=%i)\n",
"shared-dma-pool", ret);
panic();
}
ret = fdt_setprop_u64(fdt, node, "reg", start_addr);
if (ret < 0) {
NOTICE("BL2: Cannot add FCNL reg prop (ret=%i)\n", ret);
panic();
}
ret = fdt_appendprop(fdt, node, "reg", &fcnlsize, sizeof(fcnlsize));
if (ret < 0) {
NOTICE("BL2: Cannot append FCNL reg size prop (ret=%i)\n", ret);
panic();
}
ret = fdt_setprop(fdt, node, "no-map", NULL, 0);
if (ret < 0) {
NOTICE("BL2: Cannot add FCNL no-map prop (ret=%i)\n", ret);
panic();
}
ret = fdt_setprop_u32(fdt, node, "renesas,formats", format);
if (ret < 0) {
NOTICE("BL2: Cannot add FCNL formats prop (ret=%i)\n", ret);
panic();
}
}
static void bl2_lossy_setting(uint32_t no, uint64_t start_addr,
uint64_t end_addr, uint32_t format,
uint32_t enable, int fcnlnode)
{
bl2_lossy_info_t info;
uint32_t reg;
bl2_lossy_gen_fdt(no, start_addr, end_addr, format, enable, fcnlnode);
reg = format | (start_addr >> 20);
mmio_write_32(AXI_DCMPAREACRA0 + 0x8U * no, reg);
mmio_write_32(AXI_DCMPAREACRB0 + 0x8U * no, end_addr >> 20);
mmio_write_32(AXI_DCMPAREACRA0 + 0x8U * no, reg | enable);
info.magic = 0x12345678U;
info.a0 = mmio_read_32(AXI_DCMPAREACRA0 + 0x8U * no);
info.b0 = mmio_read_32(AXI_DCMPAREACRB0 + 0x8U * no);
mmio_write_32(LOSSY_PARAMS_BASE + sizeof(info) * no, info.magic);
mmio_write_32(LOSSY_PARAMS_BASE + sizeof(info) * no + 0x4U, info.a0);
mmio_write_32(LOSSY_PARAMS_BASE + sizeof(info) * no + 0x8U, info.b0);
NOTICE(" Entry %d: DCMPAREACRAx:0x%x DCMPAREACRBx:0x%x\n", no,
mmio_read_32(AXI_DCMPAREACRA0 + 0x8U * no),
mmio_read_32(AXI_DCMPAREACRB0 + 0x8U * no));
}
#endif /* RCAR_LOSSY_ENABLE == 1 */
void bl2_plat_flush_bl31_params(void)
{
uint32_t product_cut, product, cut;
uint32_t boot_dev, boot_cpu;
uint32_t reg;
reg = mmio_read_32(RCAR_MODEMR);
boot_dev = reg & MODEMR_BOOT_DEV_MASK;
if (boot_dev == MODEMR_BOOT_DEV_EMMC_25X1 ||
boot_dev == MODEMR_BOOT_DEV_EMMC_50X8) {
emmc_terminate();
}
if ((reg & MODEMR_BOOT_CPU_MASK) != MODEMR_BOOT_CPU_CR7) {
bl2_secure_setting();
}
reg = mmio_read_32(RCAR_PRR);
product_cut = reg & (PRR_PRODUCT_MASK | PRR_CUT_MASK);
product = reg & PRR_PRODUCT_MASK;
cut = reg & PRR_CUT_MASK;
if (!((product == PRR_PRODUCT_M3 && cut < PRR_PRODUCT_30) ||
(product == PRR_PRODUCT_H3 && cut < PRR_PRODUCT_20))) {
/* Disable MFIS write protection */
mmio_write_32(MFISWPCNTR, MFISWPCNTR_PASSWORD | 1U);
}
reg = mmio_read_32(RCAR_MODEMR);
boot_cpu = reg & MODEMR_BOOT_CPU_MASK;
if (boot_cpu == MODEMR_BOOT_CPU_CA57 ||
boot_cpu == MODEMR_BOOT_CPU_CA53) {
if (product_cut == PRR_PRODUCT_H3_CUT20) {
mmio_write_32(IPMMUVI0_IMSCTLR, IMSCTLR_DISCACHE);
mmio_write_32(IPMMUVI1_IMSCTLR, IMSCTLR_DISCACHE);
mmio_write_32(IPMMUPV0_IMSCTLR, IMSCTLR_DISCACHE);
mmio_write_32(IPMMUPV1_IMSCTLR, IMSCTLR_DISCACHE);
mmio_write_32(IPMMUPV2_IMSCTLR, IMSCTLR_DISCACHE);
mmio_write_32(IPMMUPV3_IMSCTLR, IMSCTLR_DISCACHE);
} else if (product_cut == (PRR_PRODUCT_M3N | PRR_PRODUCT_10) ||
product_cut == (PRR_PRODUCT_M3N | PRR_PRODUCT_11)) {
mmio_write_32(IPMMUVI0_IMSCTLR, IMSCTLR_DISCACHE);
mmio_write_32(IPMMUPV0_IMSCTLR, IMSCTLR_DISCACHE);
} else if ((product_cut == (PRR_PRODUCT_E3 | PRR_PRODUCT_10)) ||
(product_cut == (PRR_PRODUCT_E3 | PRR_PRODUCT_11))) {
mmio_write_32(IPMMUVI0_IMSCTLR, IMSCTLR_DISCACHE);
mmio_write_32(IPMMUVP0_IMSCTLR, IMSCTLR_DISCACHE);
mmio_write_32(IPMMUPV0_IMSCTLR, IMSCTLR_DISCACHE);
}
if (product_cut == (PRR_PRODUCT_H3_CUT20) ||
product_cut == (PRR_PRODUCT_M3N | PRR_PRODUCT_10) ||
product_cut == (PRR_PRODUCT_M3N | PRR_PRODUCT_11) ||
product_cut == (PRR_PRODUCT_E3 | PRR_PRODUCT_10)) {
mmio_write_32(IPMMUHC_IMSCTLR, IMSCTLR_DISCACHE);
mmio_write_32(IPMMURT_IMSCTLR, IMSCTLR_DISCACHE);
mmio_write_32(IPMMUMP_IMSCTLR, IMSCTLR_DISCACHE);
mmio_write_32(IPMMUDS0_IMSCTLR, IMSCTLR_DISCACHE);
mmio_write_32(IPMMUDS1_IMSCTLR, IMSCTLR_DISCACHE);
}
}
mmio_write_32(IPMMUMM_IMSCTLR, IPMMUMM_IMSCTLR_ENABLE);
mmio_write_32(IPMMUMM_IMAUXCTLR, IPMMUMM_IMAUXCTLR_NMERGE40_BIT);
rcar_swdt_release();
bl2_system_cpg_init();
#if RCAR_BL2_DCACHE == 1
/* Disable data cache (clean and invalidate) */
disable_mmu_el3();
#endif /* RCAR_BL2_DCACHE == 1 */
}
static uint32_t is_ddr_backup_mode(void)
{
#if RCAR_SYSTEM_SUSPEND
static uint32_t reason = RCAR_COLD_BOOT;
static uint32_t once;
if (once != 0U) {
return reason;
}
once = 1;
if ((mmio_read_32(GPIO_INDT) & GPIO_BKUP_TRG_SHIFT) == 0U) {
return reason;
}
reason = RCAR_WARM_BOOT;
return reason;
#else /* RCAR_SYSTEM_SUSPEND */
return RCAR_COLD_BOOT;
#endif /* RCAR_SYSTEM_SUSPEND */
}
int bl2_plat_handle_pre_image_load(unsigned int image_id)
{
u_register_t *boot_kind = (void *)BOOT_KIND_BASE;
bl_mem_params_node_t *bl_mem_params;
if (image_id != BL31_IMAGE_ID) {
return 0;
}
bl_mem_params = get_bl_mem_params_node(image_id);
if (is_ddr_backup_mode() != RCAR_COLD_BOOT) {
*boot_kind = RCAR_WARM_BOOT;
flush_dcache_range(BOOT_KIND_BASE, sizeof(*boot_kind));
console_flush();
bl2_plat_flush_bl31_params();
/* will not return */
bl2_enter_bl31(&bl_mem_params->ep_info);
}
*boot_kind = RCAR_COLD_BOOT;
flush_dcache_range(BOOT_KIND_BASE, sizeof(*boot_kind));
return 0;
}
static uint64_t rzg_get_dest_addr_from_cert(uint32_t certid, uintptr_t *dest)
{
uint32_t cert, len;
int err;
err = rcar_get_certificate(certid, &cert);
if (err != 0) {
ERROR("%s : cert file load error", __func__);
return 1U;
}
rcar_read_certificate((uint64_t)cert, &len, dest);
return 0U;
}
int bl2_plat_handle_post_image_load(unsigned int image_id)
{
static bl2_to_bl31_params_mem_t *params;
bl_mem_params_node_t *bl_mem_params;
uintptr_t dest;
uint64_t ret;
if (params == NULL) {
params = (bl2_to_bl31_params_mem_t *)PARAMS_BASE;
memset((void *)PARAMS_BASE, 0, sizeof(*params));
}
bl_mem_params = get_bl_mem_params_node(image_id);
switch (image_id) {
case BL31_IMAGE_ID:
ret = rzg_get_dest_addr_from_cert(SOC_FW_CONTENT_CERT_ID,
&dest);
if (ret == 0U) {
bl_mem_params->image_info.image_base = dest;
}
break;
case BL32_IMAGE_ID:
ret = rzg_get_dest_addr_from_cert(TRUSTED_OS_FW_CONTENT_CERT_ID,
&dest);
if (ret == 0U) {
bl_mem_params->image_info.image_base = dest;
}
memcpy(&params->bl32_ep_info, &bl_mem_params->ep_info,
sizeof(entry_point_info_t));
break;
case BL33_IMAGE_ID:
memcpy(&params->bl33_ep_info, &bl_mem_params->ep_info,
sizeof(entry_point_info_t));
break;
default:
break;
}
return 0;
}
struct meminfo *bl2_plat_sec_mem_layout(void)
{
return &bl2_tzram_layout;
}
static void bl2_populate_compatible_string(void *dt)
{
uint32_t board_type;
uint32_t board_rev;
uint32_t reg;
int ret;
fdt_setprop_u32(dt, 0, "#address-cells", 2);
fdt_setprop_u32(dt, 0, "#size-cells", 2);
/* Populate compatible string */
rzg_get_board_type(&board_type, &board_rev);
switch (board_type) {
case BOARD_HIHOPE_RZ_G2M:
ret = fdt_setprop_string(dt, 0, "compatible",
"hoperun,hihope-rzg2m");
break;
case BOARD_HIHOPE_RZ_G2H:
ret = fdt_setprop_string(dt, 0, "compatible",
"hoperun,hihope-rzg2h");
break;
case BOARD_HIHOPE_RZ_G2N:
ret = fdt_setprop_string(dt, 0, "compatible",
"hoperun,hihope-rzg2n");
break;
case BOARD_EK874_RZ_G2E:
ret = fdt_setprop_string(dt, 0, "compatible",
"si-linux,cat874");
break;
default:
NOTICE("BL2: Cannot set compatible string, board unsupported\n");
panic();
break;
}
if (ret < 0) {
NOTICE("BL2: Cannot set compatible string (ret=%i)\n", ret);
panic();
}
reg = mmio_read_32(RCAR_PRR);
switch (reg & PRR_PRODUCT_MASK) {
case PRR_PRODUCT_M3:
ret = fdt_appendprop_string(dt, 0, "compatible",
"renesas,r8a774a1");
break;
case PRR_PRODUCT_H3:
ret = fdt_appendprop_string(dt, 0, "compatible",
"renesas,r8a774e1");
break;
case PRR_PRODUCT_M3N:
ret = fdt_appendprop_string(dt, 0, "compatible",
"renesas,r8a774b1");
break;
case PRR_PRODUCT_E3:
ret = fdt_appendprop_string(dt, 0, "compatible",
"renesas,r8a774c0");
break;
default:
NOTICE("BL2: Cannot set compatible string, SoC unsupported\n");
panic();
break;
}
if (ret < 0) {
NOTICE("BL2: Cannot set compatible string (ret=%i)\n", ret);
panic();
}
}
static int bl2_add_memory_node(uint64_t start, uint64_t size)
{
char nodename[32] = { 0 };
uint64_t fdtsize;
int ret, node;
fdtsize = cpu_to_fdt64(size);
snprintf(nodename, sizeof(nodename), "memory@");
unsigned_num_print(start, 16, nodename + strlen(nodename));
node = ret = fdt_add_subnode(fdt, 0, nodename);
if (ret < 0) {
return ret;
}
ret = fdt_setprop_string(fdt, node, "device_type", "memory");
if (ret < 0) {
return ret;
}
ret = fdt_setprop_u64(fdt, node, "reg", start);
if (ret < 0) {
return ret;
}
return fdt_appendprop(fdt, node, "reg", &fdtsize, sizeof(fdtsize));
}
static void bl2_advertise_dram_entries(uint64_t dram_config[8])
{
uint64_t start, size;
int ret, chan;
for (chan = 0; chan < MAX_DRAM_CHANNELS; chan++) {
start = dram_config[2 * chan];
size = dram_config[2 * chan + 1];
if (size == 0U) {
continue;
}
NOTICE("BL2: CH%d: %" PRIx64 " - %" PRIx64 ", %" PRId64 " %siB\n",
chan, start, start + size - 1U,
(size >> 30) ? : size >> 20,
(size >> 30) ? "G" : "M");
}
/*
* We add the DT nodes in reverse order here. The fdt_add_subnode()
* adds the DT node before the first existing DT node, so we have
* to add them in reverse order to get nodes sorted by address in
* the resulting DT.
*/
for (chan = MAX_DRAM_CHANNELS - 1; chan >= 0; chan--) {
start = dram_config[2 * chan];
size = dram_config[2 * chan + 1];
if (size == 0U) {
continue;
}
/*
* Channel 0 is mapped in 32bit space and the first
* 128 MiB are reserved
*/
if (chan == 0) {
/*
* Maximum DDR size in Channel 0 for 32 bit space is 2GB, Add DT node
* for remaining region in 64 bit address space
*/
if (size > MAX_DRAM_SIZE_CH0_32BIT_ADDR_SPACE) {
start = dram_config[chan] + MAX_DRAM_SIZE_CH0_32BIT_ADDR_SPACE;
size -= MAX_DRAM_SIZE_CH0_32BIT_ADDR_SPACE;
ret = bl2_add_memory_node(start, size);
if (ret < 0) {
goto err;
}
}
start = 0x48000000U;
size -= 0x8000000U;
}
ret = bl2_add_memory_node(start, size);
if (ret < 0) {
goto err;
}
}
return;
err:
NOTICE("BL2: Cannot add memory node to FDT (ret=%i)\n", ret);
panic();
}
static void bl2_advertise_dram_size(uint32_t product)
{
uint64_t dram_config[8] = {
[0] = 0x400000000ULL,
[2] = 0x500000000ULL,
[4] = 0x600000000ULL,
[6] = 0x700000000ULL,
};
switch (product) {
case PRR_PRODUCT_M3:
/* 4GB(2GBx2 2ch split) */
dram_config[1] = 0x80000000ULL;
dram_config[5] = 0x80000000ULL;
break;
case PRR_PRODUCT_H3:
#if (RCAR_DRAM_LPDDR4_MEMCONF == 0)
/* 4GB(1GBx4) */
dram_config[1] = 0x40000000ULL;
dram_config[3] = 0x40000000ULL;
dram_config[5] = 0x40000000ULL;
dram_config[7] = 0x40000000ULL;
#elif (RCAR_DRAM_LPDDR4_MEMCONF == 1) && (RCAR_DRAM_CHANNEL == 5) && \
(RCAR_DRAM_SPLIT == 2)
/* 4GB(2GBx2 2ch split) */
dram_config[1] = 0x80000000ULL;
dram_config[3] = 0x80000000ULL;
#elif (RCAR_DRAM_LPDDR4_MEMCONF == 1) && (RCAR_DRAM_CHANNEL == 15)
/* 8GB(2GBx4: default) */
dram_config[1] = 0x80000000ULL;
dram_config[3] = 0x80000000ULL;
dram_config[5] = 0x80000000ULL;
dram_config[7] = 0x80000000ULL;
#endif /* RCAR_DRAM_LPDDR4_MEMCONF == 0 */
break;
case PRR_PRODUCT_M3N:
/* 4GB(4GBx1) */
dram_config[1] = 0x100000000ULL;
break;
case PRR_PRODUCT_E3:
#if (RCAR_DRAM_DDR3L_MEMCONF == 0)
/* 1GB(512MBx2) */
dram_config[1] = 0x40000000ULL;
#elif (RCAR_DRAM_DDR3L_MEMCONF == 1)
/* 2GB(512MBx4) */
dram_config[1] = 0x80000000ULL;
#elif (RCAR_DRAM_DDR3L_MEMCONF == 2)
/* 4GB(1GBx4) */
dram_config[1] = 0x100000000ULL;
#endif /* RCAR_DRAM_DDR3L_MEMCONF == 0 */
break;
default:
NOTICE("BL2: Detected invalid DRAM entries\n");
break;
}
bl2_advertise_dram_entries(dram_config);
}
void bl2_el3_early_platform_setup(u_register_t arg1, u_register_t arg2,
u_register_t arg3, u_register_t arg4)
{
uint32_t reg, midr, boot_dev, boot_cpu, type, rev;
uint32_t product, product_cut, major, minor;
int32_t ret;
const char *str;
const char *unknown = "unknown";
const char *cpu_ca57 = "CA57";
const char *cpu_ca53 = "CA53";
const char *product_g2e = "G2E";
const char *product_g2h = "G2H";
const char *product_g2m = "G2M";
const char *product_g2n = "G2N";
const char *boot_hyper80 = "HyperFlash(80MHz)";
const char *boot_qspi40 = "QSPI Flash(40MHz)";
const char *boot_qspi80 = "QSPI Flash(80MHz)";
const char *boot_emmc25x1 = "eMMC(25MHz x1)";
const char *boot_emmc50x8 = "eMMC(50MHz x8)";
#if (RCAR_LSI == RZ_G2E)
uint32_t sscg;
const char *sscg_on = "PLL1 SSCG Clock select";
const char *sscg_off = "PLL1 nonSSCG Clock select";
const char *boot_hyper160 = "HyperFlash(150MHz)";
#else
const char *boot_hyper160 = "HyperFlash(160MHz)";
#endif /* RCAR_LSI == RZ_G2E */
#if RZG_LCS_STATE_DETECTION_ENABLE
uint32_t lcs;
const char *lcs_secure = "SE";
const char *lcs_cm = "CM";
const char *lcs_dm = "DM";
const char *lcs_sd = "SD";
const char *lcs_fa = "FA";
#endif /* RZG_LCS_STATE_DETECTION_ENABLE */
#if (RCAR_LOSSY_ENABLE == 1)
int fcnlnode;
#endif /* (RCAR_LOSSY_ENABLE == 1) */
bl2_init_generic_timer();
reg = mmio_read_32(RCAR_MODEMR);
boot_dev = reg & MODEMR_BOOT_DEV_MASK;
boot_cpu = reg & MODEMR_BOOT_CPU_MASK;
bl2_cpg_init();
if (boot_cpu == MODEMR_BOOT_CPU_CA57 ||
boot_cpu == MODEMR_BOOT_CPU_CA53) {
rzg_pfc_init();
rcar_console_boot_init();
}
plat_rcar_gic_driver_init();
plat_rcar_gic_init();
rcar_swdt_init();
/* FIQ interrupts are taken to EL3 */
write_scr_el3(read_scr_el3() | SCR_FIQ_BIT);
write_daifclr(DAIF_FIQ_BIT);
reg = read_midr();
midr = reg & (MIDR_PN_MASK << MIDR_PN_SHIFT);
switch (midr) {
case MIDR_CA57:
str = cpu_ca57;
break;
case MIDR_CA53:
str = cpu_ca53;
break;
default:
str = unknown;
break;
}
NOTICE("BL2: RZ/G2 Initial Program Loader(%s) Rev.%s\n", str,
version_of_renesas);
reg = mmio_read_32(RCAR_PRR);
product_cut = reg & (PRR_PRODUCT_MASK | PRR_CUT_MASK);
product = reg & PRR_PRODUCT_MASK;
switch (product) {
case PRR_PRODUCT_M3:
str = product_g2m;
break;
case PRR_PRODUCT_H3:
str = product_g2h;
break;
case PRR_PRODUCT_M3N:
str = product_g2n;
break;
case PRR_PRODUCT_E3:
str = product_g2e;
break;
default:
str = unknown;
break;
}
if ((product == PRR_PRODUCT_M3) &&
((reg & RCAR_MAJOR_MASK) == PRR_PRODUCT_20)) {
if ((reg & PRR_CUT_MASK) == RCAR_M3_CUT_VER11) {
/* M3 Ver.1.1 or Ver.1.2 */
NOTICE("BL2: PRR is RZ/%s Ver.1.1 / Ver.1.2\n", str);
} else {
NOTICE("BL2: PRR is RZ/%s Ver.1.%d\n", str,
(reg & RCAR_MINOR_MASK) + RCAR_M3_MINOR_OFFSET);
}
} else {
major = (reg & RCAR_MAJOR_MASK) >> RCAR_MAJOR_SHIFT;
major = major + RCAR_MAJOR_OFFSET;
minor = reg & RCAR_MINOR_MASK;
NOTICE("BL2: PRR is RZ/%s Ver.%d.%d\n", str, major, minor);
}
#if (RCAR_LSI == RZ_G2E)
if (product == PRR_PRODUCT_E3) {
reg = mmio_read_32(RCAR_MODEMR);
sscg = reg & RCAR_SSCG_MASK;
str = sscg == RCAR_SSCG_ENABLE ? sscg_on : sscg_off;
NOTICE("BL2: %s\n", str);
}
#endif /* RCAR_LSI == RZ_G2E */
rzg_get_board_type(&type, &rev);
switch (type) {
case BOARD_HIHOPE_RZ_G2M:
case BOARD_HIHOPE_RZ_G2H:
case BOARD_HIHOPE_RZ_G2N:
case BOARD_EK874_RZ_G2E:
break;
default:
type = BOARD_UNKNOWN;
break;
}
if (type == BOARD_UNKNOWN || rev == BOARD_REV_UNKNOWN) {
NOTICE("BL2: Board is %s Rev.---\n", GET_BOARD_NAME(type));
} else {
NOTICE("BL2: Board is %s Rev.%d.%d\n",
GET_BOARD_NAME(type),
GET_BOARD_MAJOR(rev), GET_BOARD_MINOR(rev));
}
#if RCAR_LSI != RCAR_AUTO
if (product != TARGET_PRODUCT) {
ERROR("BL2: IPL was been built for the %s.\n", TARGET_NAME);
ERROR("BL2: Please write the correct IPL to flash memory.\n");
panic();
}
#endif /* RCAR_LSI != RCAR_AUTO */
rcar_avs_init();
rcar_avs_setting();
switch (boot_dev) {
case MODEMR_BOOT_DEV_HYPERFLASH160:
str = boot_hyper160;
break;
case MODEMR_BOOT_DEV_HYPERFLASH80:
str = boot_hyper80;
break;
case MODEMR_BOOT_DEV_QSPI_FLASH40:
str = boot_qspi40;
break;
case MODEMR_BOOT_DEV_QSPI_FLASH80:
str = boot_qspi80;
break;
case MODEMR_BOOT_DEV_EMMC_25X1:
str = boot_emmc25x1;
break;
case MODEMR_BOOT_DEV_EMMC_50X8:
str = boot_emmc50x8;
break;
default:
str = unknown;
break;
}
NOTICE("BL2: Boot device is %s\n", str);
rcar_avs_setting();
#if RZG_LCS_STATE_DETECTION_ENABLE
reg = rcar_rom_get_lcs(&lcs);
if (reg != 0U) {
str = unknown;
goto lcm_state;
}
switch (lcs) {
case LCS_CM:
str = lcs_cm;
break;
case LCS_DM:
str = lcs_dm;
break;
case LCS_SD:
str = lcs_sd;
break;
case LCS_SE:
str = lcs_secure;
break;
case LCS_FA:
str = lcs_fa;
break;
default:
str = unknown;
break;
}
lcm_state:
NOTICE("BL2: LCM state is %s\n", str);
#endif /* RZG_LCS_STATE_DETECTION_ENABLE */
rcar_avs_end();
is_ddr_backup_mode();
bl2_tzram_layout.total_base = BL31_BASE;
bl2_tzram_layout.total_size = BL31_LIMIT - BL31_BASE;
if (boot_cpu == MODEMR_BOOT_CPU_CA57 ||
boot_cpu == MODEMR_BOOT_CPU_CA53) {
ret = rcar_dram_init();
if (ret != 0) {
NOTICE("BL2: Failed to DRAM initialize (%d).\n", ret);
panic();
}
rzg_qos_init();
}
/* Set up FDT */
ret = fdt_create_empty_tree(fdt, sizeof(fdt_blob));
if (ret != 0) {
NOTICE("BL2: Cannot allocate FDT for U-Boot (ret=%i)\n", ret);
panic();
}
/* Add platform compatible string */
bl2_populate_compatible_string(fdt);
/* Print DRAM layout */
bl2_advertise_dram_size(product);
if (boot_dev == MODEMR_BOOT_DEV_EMMC_25X1 ||
boot_dev == MODEMR_BOOT_DEV_EMMC_50X8) {
if (rcar_emmc_init() != EMMC_SUCCESS) {
NOTICE("BL2: Failed to eMMC driver initialize.\n");
panic();
}
rcar_emmc_memcard_power(EMMC_POWER_ON);
if (rcar_emmc_mount() != EMMC_SUCCESS) {
NOTICE("BL2: Failed to eMMC mount operation.\n");
panic();
}
} else {
rcar_rpc_init();
rcar_dma_init();
}
reg = mmio_read_32(RST_WDTRSTCR);
reg &= ~WDTRSTCR_RWDT_RSTMSK;
reg |= WDTRSTCR_PASSWORD;
mmio_write_32(RST_WDTRSTCR, reg);
mmio_write_32(CPG_CPGWPR, CPGWPR_PASSWORD);
mmio_write_32(CPG_CPGWPCR, CPGWPCR_PASSWORD);
reg = mmio_read_32(RCAR_PRR);
if ((reg & RCAR_CPU_MASK_CA57) == RCAR_CPU_HAVE_CA57) {
mmio_write_32(CPG_CA57DBGRCR,
DBGCPUPREN | mmio_read_32(CPG_CA57DBGRCR));
}
if ((reg & RCAR_CPU_MASK_CA53) == RCAR_CPU_HAVE_CA53) {
mmio_write_32(CPG_CA53DBGRCR,
DBGCPUPREN | mmio_read_32(CPG_CA53DBGRCR));
}
if (product_cut == PRR_PRODUCT_H3_CUT10) {
reg = mmio_read_32(CPG_PLL2CR);
reg &= ~((uint32_t)1 << 5);
mmio_write_32(CPG_PLL2CR, reg);
reg = mmio_read_32(CPG_PLL4CR);
reg &= ~((uint32_t)1 << 5);
mmio_write_32(CPG_PLL4CR, reg);
reg = mmio_read_32(CPG_PLL0CR);
reg &= ~((uint32_t)1 << 12);
mmio_write_32(CPG_PLL0CR, reg);
}
#if (RCAR_LOSSY_ENABLE == 1)
NOTICE("BL2: Lossy Decomp areas\n");
fcnlnode = fdt_add_subnode(fdt, 0, "reserved-memory");
if (fcnlnode < 0) {
NOTICE("BL2: Cannot create reserved mem node (ret=%i)\n",
fcnlnode);
panic();
}
bl2_lossy_setting(0, LOSSY_ST_ADDR0, LOSSY_END_ADDR0,
LOSSY_FMT0, LOSSY_ENA_DIS0, fcnlnode);
bl2_lossy_setting(1, LOSSY_ST_ADDR1, LOSSY_END_ADDR1,
LOSSY_FMT1, LOSSY_ENA_DIS1, fcnlnode);
bl2_lossy_setting(2, LOSSY_ST_ADDR2, LOSSY_END_ADDR2,
LOSSY_FMT2, LOSSY_ENA_DIS2, fcnlnode);
#endif /* RCAR_LOSSY_ENABLE */
fdt_pack(fdt);
NOTICE("BL2: FDT at %p\n", fdt);
if (boot_dev == MODEMR_BOOT_DEV_EMMC_25X1 ||
boot_dev == MODEMR_BOOT_DEV_EMMC_50X8) {
rcar_io_emmc_setup();
} else {
rcar_io_setup();
}
}
void bl2_el3_plat_arch_setup(void)
{
#if RCAR_BL2_DCACHE == 1
NOTICE("BL2: D-Cache enable\n");
rcar_configure_mmu_el3(BL2_BASE,
BL2_END - BL2_BASE,
BL2_RO_BASE, BL2_RO_LIMIT
#if USE_COHERENT_MEM
, BL2_COHERENT_RAM_BASE, BL2_COHERENT_RAM_LIMIT
#endif /* USE_COHERENT_MEM */
);
#endif /* RCAR_BL2_DCACHE == 1 */
}
void bl2_platform_setup(void)
{
/*
* Place holder for performing any platform initialization specific
* to BL2.
*/
}
static void bl2_init_generic_timer(void)
{
#if RCAR_LSI == RZ_G2E
uint32_t reg_cntfid = EXTAL_EBISU;
#else
uint32_t reg_cntfid;
uint32_t modemr;
uint32_t modemr_pll;
uint32_t pll_table[] = {
EXTAL_MD14_MD13_TYPE_0, /* MD14/MD13 : 0b00 */
EXTAL_MD14_MD13_TYPE_1, /* MD14/MD13 : 0b01 */
EXTAL_MD14_MD13_TYPE_2, /* MD14/MD13 : 0b10 */
EXTAL_MD14_MD13_TYPE_3 /* MD14/MD13 : 0b11 */
};
modemr = mmio_read_32(RCAR_MODEMR);
modemr_pll = (modemr & MODEMR_BOOT_PLL_MASK);
/* Set frequency data in CNTFID0 */
reg_cntfid = pll_table[modemr_pll >> MODEMR_BOOT_PLL_SHIFT];
#endif /* RCAR_LSI == RZ_G2E */
/* Update memory mapped and register based frequency */
write_cntfrq_el0((u_register_t)reg_cntfid);
mmio_write_32(ARM_SYS_CNTCTL_BASE + (uintptr_t)CNTFID_OFF, reg_cntfid);
/* Enable counter */
mmio_setbits_32(RCAR_CNTC_BASE + (uintptr_t)CNTCR_OFF,
(uint32_t)CNTCR_EN);
}