arm-trusted-firmware/drivers/st/spi/stm32_qspi.c

514 lines
11 KiB
C

/*
* Copyright (c) 2019-2022, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
*/
#include <inttypes.h>
#include <common/debug.h>
#include <common/fdt_wrappers.h>
#include <drivers/clk.h>
#include <drivers/delay_timer.h>
#include <drivers/spi_mem.h>
#include <drivers/st/stm32_gpio.h>
#include <drivers/st/stm32_qspi.h>
#include <drivers/st/stm32mp_reset.h>
#include <lib/mmio.h>
#include <lib/utils_def.h>
#include <libfdt.h>
#include <platform_def.h>
/* Timeout for device interface reset */
#define TIMEOUT_US_1_MS 1000U
/* QUADSPI registers */
#define QSPI_CR 0x00U
#define QSPI_DCR 0x04U
#define QSPI_SR 0x08U
#define QSPI_FCR 0x0CU
#define QSPI_DLR 0x10U
#define QSPI_CCR 0x14U
#define QSPI_AR 0x18U
#define QSPI_ABR 0x1CU
#define QSPI_DR 0x20U
#define QSPI_PSMKR 0x24U
#define QSPI_PSMAR 0x28U
#define QSPI_PIR 0x2CU
#define QSPI_LPTR 0x30U
/* QUADSPI control register */
#define QSPI_CR_EN BIT(0)
#define QSPI_CR_ABORT BIT(1)
#define QSPI_CR_DMAEN BIT(2)
#define QSPI_CR_TCEN BIT(3)
#define QSPI_CR_SSHIFT BIT(4)
#define QSPI_CR_DFM BIT(6)
#define QSPI_CR_FSEL BIT(7)
#define QSPI_CR_FTHRES_SHIFT 8U
#define QSPI_CR_TEIE BIT(16)
#define QSPI_CR_TCIE BIT(17)
#define QSPI_CR_FTIE BIT(18)
#define QSPI_CR_SMIE BIT(19)
#define QSPI_CR_TOIE BIT(20)
#define QSPI_CR_APMS BIT(22)
#define QSPI_CR_PMM BIT(23)
#define QSPI_CR_PRESCALER_MASK GENMASK_32(31, 24)
#define QSPI_CR_PRESCALER_SHIFT 24U
/* QUADSPI device configuration register */
#define QSPI_DCR_CKMODE BIT(0)
#define QSPI_DCR_CSHT_MASK GENMASK_32(10, 8)
#define QSPI_DCR_CSHT_SHIFT 8U
#define QSPI_DCR_FSIZE_MASK GENMASK_32(20, 16)
#define QSPI_DCR_FSIZE_SHIFT 16U
/* QUADSPI status register */
#define QSPI_SR_TEF BIT(0)
#define QSPI_SR_TCF BIT(1)
#define QSPI_SR_FTF BIT(2)
#define QSPI_SR_SMF BIT(3)
#define QSPI_SR_TOF BIT(4)
#define QSPI_SR_BUSY BIT(5)
/* QUADSPI flag clear register */
#define QSPI_FCR_CTEF BIT(0)
#define QSPI_FCR_CTCF BIT(1)
#define QSPI_FCR_CSMF BIT(3)
#define QSPI_FCR_CTOF BIT(4)
/* QUADSPI communication configuration register */
#define QSPI_CCR_DDRM BIT(31)
#define QSPI_CCR_DHHC BIT(30)
#define QSPI_CCR_SIOO BIT(28)
#define QSPI_CCR_FMODE_SHIFT 26U
#define QSPI_CCR_DMODE_SHIFT 24U
#define QSPI_CCR_DCYC_SHIFT 18U
#define QSPI_CCR_ABSIZE_SHIFT 16U
#define QSPI_CCR_ABMODE_SHIFT 14U
#define QSPI_CCR_ADSIZE_SHIFT 12U
#define QSPI_CCR_ADMODE_SHIFT 10U
#define QSPI_CCR_IMODE_SHIFT 8U
#define QSPI_CCR_IND_WRITE 0U
#define QSPI_CCR_IND_READ 1U
#define QSPI_CCR_MEM_MAP 3U
#define QSPI_MAX_CHIP 2U
#define QSPI_FIFO_TIMEOUT_US 30U
#define QSPI_CMD_TIMEOUT_US 1000U
#define QSPI_BUSY_TIMEOUT_US 100U
#define QSPI_ABT_TIMEOUT_US 100U
#define DT_QSPI_COMPAT "st,stm32f469-qspi"
#define FREQ_100MHZ 100000000U
struct stm32_qspi_ctrl {
uintptr_t reg_base;
uintptr_t mm_base;
size_t mm_size;
unsigned long clock_id;
unsigned int reset_id;
};
static struct stm32_qspi_ctrl stm32_qspi;
static uintptr_t qspi_base(void)
{
return stm32_qspi.reg_base;
}
static int stm32_qspi_wait_for_not_busy(void)
{
uint64_t timeout = timeout_init_us(QSPI_BUSY_TIMEOUT_US);
while ((mmio_read_32(qspi_base() + QSPI_SR) & QSPI_SR_BUSY) != 0U) {
if (timeout_elapsed(timeout)) {
ERROR("%s: busy timeout\n", __func__);
return -ETIMEDOUT;
}
}
return 0;
}
static int stm32_qspi_wait_cmd(const struct spi_mem_op *op)
{
int ret = 0;
uint64_t timeout;
timeout = timeout_init_us(QSPI_CMD_TIMEOUT_US);
while ((mmio_read_32(qspi_base() + QSPI_SR) & QSPI_SR_TCF) == 0U) {
if (timeout_elapsed(timeout)) {
ret = -ETIMEDOUT;
break;
}
}
if (ret == 0) {
if ((mmio_read_32(qspi_base() + QSPI_SR) & QSPI_SR_TEF) != 0U) {
ERROR("%s: transfer error\n", __func__);
ret = -EIO;
}
} else {
ERROR("%s: cmd timeout\n", __func__);
}
/* Clear flags */
mmio_write_32(qspi_base() + QSPI_FCR, QSPI_FCR_CTCF | QSPI_FCR_CTEF);
if (ret == 0) {
ret = stm32_qspi_wait_for_not_busy();
}
return ret;
}
static void stm32_qspi_read_fifo(uint8_t *val, uintptr_t addr)
{
*val = mmio_read_8(addr);
}
static void stm32_qspi_write_fifo(uint8_t *val, uintptr_t addr)
{
mmio_write_8(addr, *val);
}
static int stm32_qspi_poll(const struct spi_mem_op *op)
{
void (*fifo)(uint8_t *val, uintptr_t addr);
uint32_t len;
uint8_t *buf;
if (op->data.dir == SPI_MEM_DATA_IN) {
fifo = stm32_qspi_read_fifo;
} else {
fifo = stm32_qspi_write_fifo;
}
buf = (uint8_t *)op->data.buf;
for (len = op->data.nbytes; len != 0U; len--) {
uint64_t timeout = timeout_init_us(QSPI_FIFO_TIMEOUT_US);
while ((mmio_read_32(qspi_base() + QSPI_SR) &
QSPI_SR_FTF) == 0U) {
if (timeout_elapsed(timeout)) {
ERROR("%s: fifo timeout\n", __func__);
return -ETIMEDOUT;
}
}
fifo(buf++, qspi_base() + QSPI_DR);
}
return 0;
}
static int stm32_qspi_mm(const struct spi_mem_op *op)
{
memcpy(op->data.buf,
(void *)(stm32_qspi.mm_base + (size_t)op->addr.val),
op->data.nbytes);
return 0;
}
static int stm32_qspi_tx(const struct spi_mem_op *op, uint8_t mode)
{
if (op->data.nbytes == 0U) {
return 0;
}
if (mode == QSPI_CCR_MEM_MAP) {
return stm32_qspi_mm(op);
}
return stm32_qspi_poll(op);
}
static unsigned int stm32_qspi_get_mode(uint8_t buswidth)
{
if (buswidth == 4U) {
return 3U;
}
return buswidth;
}
static int stm32_qspi_exec_op(const struct spi_mem_op *op)
{
uint64_t timeout;
uint32_t ccr;
size_t addr_max;
uint8_t mode = QSPI_CCR_IND_WRITE;
int ret;
VERBOSE("%s: cmd:%x mode:%d.%d.%d.%d addr:%" PRIx64 " len:%x\n",
__func__, op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
op->dummy.buswidth, op->data.buswidth,
op->addr.val, op->data.nbytes);
ret = stm32_qspi_wait_for_not_busy();
if (ret != 0) {
return ret;
}
addr_max = op->addr.val + op->data.nbytes + 1U;
if ((op->data.dir == SPI_MEM_DATA_IN) && (op->data.nbytes != 0U)) {
if ((addr_max < stm32_qspi.mm_size) &&
(op->addr.buswidth != 0U)) {
mode = QSPI_CCR_MEM_MAP;
} else {
mode = QSPI_CCR_IND_READ;
}
}
if (op->data.nbytes != 0U) {
mmio_write_32(qspi_base() + QSPI_DLR, op->data.nbytes - 1U);
}
ccr = mode << QSPI_CCR_FMODE_SHIFT;
ccr |= op->cmd.opcode;
ccr |= stm32_qspi_get_mode(op->cmd.buswidth) << QSPI_CCR_IMODE_SHIFT;
if (op->addr.nbytes != 0U) {
ccr |= (op->addr.nbytes - 1U) << QSPI_CCR_ADSIZE_SHIFT;
ccr |= stm32_qspi_get_mode(op->addr.buswidth) <<
QSPI_CCR_ADMODE_SHIFT;
}
if ((op->dummy.buswidth != 0U) && (op->dummy.nbytes != 0U)) {
ccr |= (op->dummy.nbytes * 8U / op->dummy.buswidth) <<
QSPI_CCR_DCYC_SHIFT;
}
if (op->data.nbytes != 0U) {
ccr |= stm32_qspi_get_mode(op->data.buswidth) <<
QSPI_CCR_DMODE_SHIFT;
}
mmio_write_32(qspi_base() + QSPI_CCR, ccr);
if ((op->addr.nbytes != 0U) && (mode != QSPI_CCR_MEM_MAP)) {
mmio_write_32(qspi_base() + QSPI_AR, op->addr.val);
}
ret = stm32_qspi_tx(op, mode);
/*
* Abort in:
* - Error case.
* - Memory mapped read: prefetching must be stopped if we read the last
* byte of device (device size - fifo size). If device size is not
* known then prefetching is always stopped.
*/
if ((ret != 0) || (mode == QSPI_CCR_MEM_MAP)) {
goto abort;
}
/* Wait end of TX in indirect mode */
ret = stm32_qspi_wait_cmd(op);
if (ret != 0) {
goto abort;
}
return 0;
abort:
mmio_setbits_32(qspi_base() + QSPI_CR, QSPI_CR_ABORT);
/* Wait clear of abort bit by hardware */
timeout = timeout_init_us(QSPI_ABT_TIMEOUT_US);
while ((mmio_read_32(qspi_base() + QSPI_CR) & QSPI_CR_ABORT) != 0U) {
if (timeout_elapsed(timeout)) {
ret = -ETIMEDOUT;
break;
}
}
mmio_write_32(qspi_base() + QSPI_FCR, QSPI_FCR_CTCF);
if (ret != 0) {
ERROR("%s: exec op error\n", __func__);
}
return ret;
}
static int stm32_qspi_claim_bus(unsigned int cs)
{
uint32_t cr;
if (cs >= QSPI_MAX_CHIP) {
return -ENODEV;
}
/* Set chip select and enable the controller */
cr = QSPI_CR_EN;
if (cs == 1U) {
cr |= QSPI_CR_FSEL;
}
mmio_clrsetbits_32(qspi_base() + QSPI_CR, QSPI_CR_FSEL, cr);
return 0;
}
static void stm32_qspi_release_bus(void)
{
mmio_clrbits_32(qspi_base() + QSPI_CR, QSPI_CR_EN);
}
static int stm32_qspi_set_speed(unsigned int hz)
{
unsigned long qspi_clk = clk_get_rate(stm32_qspi.clock_id);
uint32_t prescaler = UINT8_MAX;
uint32_t csht;
int ret;
if (qspi_clk == 0U) {
return -EINVAL;
}
if (hz > 0U) {
prescaler = div_round_up(qspi_clk, hz) - 1U;
if (prescaler > UINT8_MAX) {
prescaler = UINT8_MAX;
}
}
csht = div_round_up((5U * qspi_clk) / (prescaler + 1U), FREQ_100MHZ);
csht = ((csht - 1U) << QSPI_DCR_CSHT_SHIFT) & QSPI_DCR_CSHT_MASK;
ret = stm32_qspi_wait_for_not_busy();
if (ret != 0) {
return ret;
}
mmio_clrsetbits_32(qspi_base() + QSPI_CR, QSPI_CR_PRESCALER_MASK,
prescaler << QSPI_CR_PRESCALER_SHIFT);
mmio_clrsetbits_32(qspi_base() + QSPI_DCR, QSPI_DCR_CSHT_MASK, csht);
VERBOSE("%s: speed=%lu\n", __func__, qspi_clk / (prescaler + 1U));
return 0;
}
static int stm32_qspi_set_mode(unsigned int mode)
{
int ret;
ret = stm32_qspi_wait_for_not_busy();
if (ret != 0) {
return ret;
}
if ((mode & SPI_CS_HIGH) != 0U) {
return -ENODEV;
}
if (((mode & SPI_CPHA) != 0U) && ((mode & SPI_CPOL) != 0U)) {
mmio_setbits_32(qspi_base() + QSPI_DCR, QSPI_DCR_CKMODE);
} else if (((mode & SPI_CPHA) == 0U) && ((mode & SPI_CPOL) == 0U)) {
mmio_clrbits_32(qspi_base() + QSPI_DCR, QSPI_DCR_CKMODE);
} else {
return -ENODEV;
}
VERBOSE("%s: mode=0x%x\n", __func__, mode);
if ((mode & SPI_RX_QUAD) != 0U) {
VERBOSE("rx: quad\n");
} else if ((mode & SPI_RX_DUAL) != 0U) {
VERBOSE("rx: dual\n");
} else {
VERBOSE("rx: single\n");
}
if ((mode & SPI_TX_QUAD) != 0U) {
VERBOSE("tx: quad\n");
} else if ((mode & SPI_TX_DUAL) != 0U) {
VERBOSE("tx: dual\n");
} else {
VERBOSE("tx: single\n");
}
return 0;
}
static const struct spi_bus_ops stm32_qspi_bus_ops = {
.claim_bus = stm32_qspi_claim_bus,
.release_bus = stm32_qspi_release_bus,
.set_speed = stm32_qspi_set_speed,
.set_mode = stm32_qspi_set_mode,
.exec_op = stm32_qspi_exec_op,
};
int stm32_qspi_init(void)
{
size_t size;
int qspi_node;
struct dt_node_info info;
void *fdt = NULL;
int ret;
if (fdt_get_address(&fdt) == 0) {
return -FDT_ERR_NOTFOUND;
}
qspi_node = dt_get_node(&info, -1, DT_QSPI_COMPAT);
if (qspi_node < 0) {
ERROR("No QSPI ctrl found\n");
return -FDT_ERR_NOTFOUND;
}
if (info.status == DT_DISABLED) {
return -FDT_ERR_NOTFOUND;
}
ret = fdt_get_reg_props_by_name(fdt, qspi_node, "qspi",
&stm32_qspi.reg_base, &size);
if (ret != 0) {
return ret;
}
ret = fdt_get_reg_props_by_name(fdt, qspi_node, "qspi_mm",
&stm32_qspi.mm_base,
&stm32_qspi.mm_size);
if (ret != 0) {
return ret;
}
if (dt_set_pinctrl_config(qspi_node) != 0) {
return -FDT_ERR_BADVALUE;
}
if ((info.clock < 0) || (info.reset < 0)) {
return -FDT_ERR_BADVALUE;
}
stm32_qspi.clock_id = (unsigned long)info.clock;
stm32_qspi.reset_id = (unsigned int)info.reset;
clk_enable(stm32_qspi.clock_id);
ret = stm32mp_reset_assert(stm32_qspi.reset_id, TIMEOUT_US_1_MS);
if (ret != 0) {
panic();
}
ret = stm32mp_reset_deassert(stm32_qspi.reset_id, TIMEOUT_US_1_MS);
if (ret != 0) {
panic();
}
mmio_write_32(qspi_base() + QSPI_CR, QSPI_CR_SSHIFT);
mmio_write_32(qspi_base() + QSPI_DCR, QSPI_DCR_FSIZE_MASK);
return spi_mem_init_slave(fdt, qspi_node, &stm32_qspi_bus_ops);
};