arm-trusted-firmware/plat/fvp/plat_gic.c

409 lines
14 KiB
C

/*
* Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <debug.h>
#include <gic_v2.h>
#include <gic_v3.h>
#include <interrupt_mgmt.h>
#include <platform.h>
#include <stdint.h>
#include "fvp_def.h"
#include "fvp_private.h"
/*******************************************************************************
* This function does some minimal GICv3 configuration. The Firmware itself does
* not fully support GICv3 at this time and relies on GICv2 emulation as
* provided by GICv3. This function allows software (like Linux) in later stages
* to use full GICv3 features.
******************************************************************************/
void gicv3_cpuif_setup(void)
{
unsigned int scr_val, val;
uintptr_t base;
/*
* When CPUs come out of reset they have their GICR_WAKER.ProcessorSleep
* bit set. In order to allow interrupts to get routed to the CPU we
* need to clear this bit if set and wait for GICR_WAKER.ChildrenAsleep
* to clear (GICv3 Architecture specification 5.4.23).
* GICR_WAKER is NOT banked per CPU, compute the correct base address
* per CPU.
*/
base = gicv3_get_rdist(BASE_GICR_BASE, read_mpidr());
if (base == (uintptr_t)NULL) {
/* No re-distributor base address. This interface cannot be
* configured.
*/
panic();
}
val = gicr_read_waker(base);
val &= ~WAKER_PS;
gicr_write_waker(base, val);
dsb();
/* We need to wait for ChildrenAsleep to clear. */
val = gicr_read_waker(base);
while (val & WAKER_CA) {
val = gicr_read_waker(base);
}
/*
* We need to set SCR_EL3.NS in order to see GICv3 non-secure state.
* Restore SCR_EL3.NS again before exit.
*/
scr_val = read_scr();
write_scr(scr_val | SCR_NS_BIT);
isb(); /* ensure NS=1 takes effect before accessing ICC_SRE_EL2 */
/*
* By default EL2 and NS-EL1 software should be able to enable GICv3
* System register access without any configuration at EL3. But it turns
* out that GICC PMR as set in GICv2 mode does not affect GICv3 mode. So
* we need to set it here again. In order to do that we need to enable
* register access. We leave it enabled as it should be fine and might
* prevent problems with later software trying to access GIC System
* Registers.
*/
val = read_icc_sre_el3();
write_icc_sre_el3(val | ICC_SRE_EN | ICC_SRE_SRE);
val = read_icc_sre_el2();
write_icc_sre_el2(val | ICC_SRE_EN | ICC_SRE_SRE);
write_icc_pmr_el1(GIC_PRI_MASK);
isb(); /* commite ICC_* changes before setting NS=0 */
/* Restore SCR_EL3 */
write_scr(scr_val);
isb(); /* ensure NS=0 takes effect immediately */
}
/*******************************************************************************
* This function does some minimal GICv3 configuration when cores go
* down.
******************************************************************************/
void gicv3_cpuif_deactivate(void)
{
unsigned int val;
uintptr_t base;
/*
* When taking CPUs down we need to set GICR_WAKER.ProcessorSleep and
* wait for GICR_WAKER.ChildrenAsleep to get set.
* (GICv3 Architecture specification 5.4.23).
* GICR_WAKER is NOT banked per CPU, compute the correct base address
* per CPU.
*/
base = gicv3_get_rdist(BASE_GICR_BASE, read_mpidr());
if (base == (uintptr_t)NULL) {
/* No re-distributor base address. This interface cannot be
* configured.
*/
panic();
}
val = gicr_read_waker(base);
val |= WAKER_PS;
gicr_write_waker(base, val);
dsb();
/* We need to wait for ChildrenAsleep to set. */
val = gicr_read_waker(base);
while ((val & WAKER_CA) == 0) {
val = gicr_read_waker(base);
}
}
/*******************************************************************************
* Enable secure interrupts and use FIQs to route them. Disable legacy bypass
* and set the priority mask register to allow all interrupts to trickle in.
******************************************************************************/
void gic_cpuif_setup(unsigned int gicc_base)
{
unsigned int val;
val = gicc_read_iidr(gicc_base);
/*
* If GICv3 we need to do a bit of additional setup. We want to
* allow default GICv2 behaviour but allow the next stage to
* enable full gicv3 features.
*/
if (((val >> GICC_IIDR_ARCH_SHIFT) & GICC_IIDR_ARCH_MASK) >= 3) {
gicv3_cpuif_setup();
}
val = ENABLE_GRP0 | FIQ_EN | FIQ_BYP_DIS_GRP0;
val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1;
gicc_write_pmr(gicc_base, GIC_PRI_MASK);
gicc_write_ctlr(gicc_base, val);
}
/*******************************************************************************
* Place the cpu interface in a state where it can never make a cpu exit wfi as
* as result of an asserted interrupt. This is critical for powering down a cpu
******************************************************************************/
void gic_cpuif_deactivate(unsigned int gicc_base)
{
unsigned int val;
/* Disable secure, non-secure interrupts and disable their bypass */
val = gicc_read_ctlr(gicc_base);
val &= ~(ENABLE_GRP0 | ENABLE_GRP1);
val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0;
val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1;
gicc_write_ctlr(gicc_base, val);
val = gicc_read_iidr(gicc_base);
/*
* If GICv3 we need to do a bit of additional setup. Make sure the
* RDIST is put to sleep.
*/
if (((val >> GICC_IIDR_ARCH_SHIFT) & GICC_IIDR_ARCH_MASK) >= 3) {
gicv3_cpuif_deactivate();
}
}
/*******************************************************************************
* Per cpu gic distributor setup which will be done by all cpus after a cold
* boot/hotplug. This marks out the secure interrupts & enables them.
******************************************************************************/
void gic_pcpu_distif_setup(unsigned int gicd_base)
{
gicd_write_igroupr(gicd_base, 0, ~0);
gicd_clr_igroupr(gicd_base, IRQ_SEC_PHY_TIMER);
gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_0);
gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_1);
gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_2);
gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_3);
gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_4);
gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_5);
gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_6);
gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_7);
gicd_set_ipriorityr(gicd_base, IRQ_SEC_PHY_TIMER, GIC_HIGHEST_SEC_PRIORITY);
gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_0, GIC_HIGHEST_SEC_PRIORITY);
gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_1, GIC_HIGHEST_SEC_PRIORITY);
gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_2, GIC_HIGHEST_SEC_PRIORITY);
gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_3, GIC_HIGHEST_SEC_PRIORITY);
gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_4, GIC_HIGHEST_SEC_PRIORITY);
gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_5, GIC_HIGHEST_SEC_PRIORITY);
gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_6, GIC_HIGHEST_SEC_PRIORITY);
gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_7, GIC_HIGHEST_SEC_PRIORITY);
gicd_set_isenabler(gicd_base, IRQ_SEC_PHY_TIMER);
gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_0);
gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_1);
gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_2);
gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_3);
gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_4);
gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_5);
gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_6);
gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_7);
}
/*******************************************************************************
* Global gic distributor setup which will be done by the primary cpu after a
* cold boot. It marks out the secure SPIs, PPIs & SGIs and enables them. It
* then enables the secure GIC distributor interface.
******************************************************************************/
void gic_distif_setup(unsigned int gicd_base)
{
unsigned int ctr, num_ints, ctlr;
/* Disable the distributor before going further */
ctlr = gicd_read_ctlr(gicd_base);
ctlr &= ~(ENABLE_GRP0 | ENABLE_GRP1);
gicd_write_ctlr(gicd_base, ctlr);
/*
* Mark out non-secure interrupts. Calculate number of
* IGROUPR registers to consider. Will be equal to the
* number of IT_LINES
*/
num_ints = gicd_read_typer(gicd_base) & IT_LINES_NO_MASK;
num_ints++;
for (ctr = 0; ctr < num_ints; ctr++)
gicd_write_igroupr(gicd_base, ctr << IGROUPR_SHIFT, ~0);
/* Configure secure interrupts now */
gicd_clr_igroupr(gicd_base, IRQ_TZ_WDOG);
gicd_set_ipriorityr(gicd_base, IRQ_TZ_WDOG, GIC_HIGHEST_SEC_PRIORITY);
gicd_set_itargetsr(gicd_base, IRQ_TZ_WDOG,
platform_get_core_pos(read_mpidr()));
gicd_set_isenabler(gicd_base, IRQ_TZ_WDOG);
gic_pcpu_distif_setup(gicd_base);
gicd_write_ctlr(gicd_base, ctlr | ENABLE_GRP0);
}
void gic_setup(void)
{
unsigned int gicd_base, gicc_base;
gicd_base = platform_get_cfgvar(CONFIG_GICD_ADDR);
gicc_base = platform_get_cfgvar(CONFIG_GICC_ADDR);
gic_cpuif_setup(gicc_base);
gic_distif_setup(gicd_base);
}
/*******************************************************************************
* An ARM processor signals interrupt exceptions through the IRQ and FIQ pins.
* The interrupt controller knows which pin/line it uses to signal a type of
* interrupt. The platform knows which interrupt controller type is being used
* in a particular security state e.g. with an ARM GIC, normal world could use
* the GICv2 features while the secure world could use GICv3 features and vice
* versa.
* This function is exported by the platform to let the interrupt management
* framework determine for a type of interrupt and security state, which line
* should be used in the SCR_EL3 to control its routing to EL3. The interrupt
* line is represented as the bit position of the IRQ or FIQ bit in the SCR_EL3.
******************************************************************************/
uint32_t plat_interrupt_type_to_line(uint32_t type, uint32_t security_state)
{
uint32_t gicc_base = platform_get_cfgvar(CONFIG_GICC_ADDR);
assert(type == INTR_TYPE_S_EL1 ||
type == INTR_TYPE_EL3 ||
type == INTR_TYPE_NS);
assert(security_state == NON_SECURE || security_state == SECURE);
/*
* We ignore the security state parameter under the assumption that
* both normal and secure worlds are using ARM GICv2. This parameter
* will be used when the secure world starts using GICv3.
*/
#if FVP_GIC_ARCH == 2
return gicv2_interrupt_type_to_line(gicc_base, type);
#else
#error "Invalid GIC architecture version specified for FVP port"
#endif
}
#if FVP_GIC_ARCH == 2
/*******************************************************************************
* This function returns the type of the highest priority pending interrupt at
* the GIC cpu interface. INTR_TYPE_INVAL is returned when there is no
* interrupt pending.
******************************************************************************/
uint32_t ic_get_pending_interrupt_type()
{
uint32_t id, gicc_base;
gicc_base = platform_get_cfgvar(CONFIG_GICC_ADDR);
id = gicc_read_hppir(gicc_base);
/* Assume that all secure interrupts are S-EL1 interrupts */
if (id < 1022)
return INTR_TYPE_S_EL1;
if (id == GIC_SPURIOUS_INTERRUPT)
return INTR_TYPE_INVAL;
return INTR_TYPE_NS;
}
/*******************************************************************************
* This function returns the id of the highest priority pending interrupt at
* the GIC cpu interface. INTR_ID_UNAVAILABLE is returned when there is no
* interrupt pending.
******************************************************************************/
uint32_t ic_get_pending_interrupt_id()
{
uint32_t id, gicc_base;
gicc_base = platform_get_cfgvar(CONFIG_GICC_ADDR);
id = gicc_read_hppir(gicc_base);
if (id < 1022)
return id;
if (id == 1023)
return INTR_ID_UNAVAILABLE;
/*
* Find out which non-secure interrupt it is under the assumption that
* the GICC_CTLR.AckCtl bit is 0.
*/
return gicc_read_ahppir(gicc_base);
}
/*******************************************************************************
* This functions reads the GIC cpu interface Interrupt Acknowledge register
* to start handling the pending interrupt. It returns the contents of the IAR.
******************************************************************************/
uint32_t ic_acknowledge_interrupt()
{
return gicc_read_IAR(platform_get_cfgvar(CONFIG_GICC_ADDR));
}
/*******************************************************************************
* This functions writes the GIC cpu interface End Of Interrupt register with
* the passed value to finish handling the active interrupt
******************************************************************************/
void ic_end_of_interrupt(uint32_t id)
{
gicc_write_EOIR(platform_get_cfgvar(CONFIG_GICC_ADDR), id);
return;
}
/*******************************************************************************
* This function returns the type of the interrupt id depending upon the group
* this interrupt has been configured under by the interrupt controller i.e.
* group0 or group1.
******************************************************************************/
uint32_t ic_get_interrupt_type(uint32_t id)
{
uint32_t group;
group = gicd_get_igroupr(platform_get_cfgvar(CONFIG_GICD_ADDR), id);
/* Assume that all secure interrupts are S-EL1 interrupts */
if (group == GRP0)
return INTR_TYPE_S_EL1;
else
return INTR_TYPE_NS;
}
#else
#error "Invalid GIC architecture version specified for FVP port"
#endif