arm-trusted-firmware/plat/nvidia/tegra/soc/t186/drivers/mce/ari.c

506 lines
13 KiB
C

/*
* Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <debug.h>
#include <delay_timer.h>
#include <denver.h>
#include <mmio.h>
#include <mce_private.h>
#include <platform.h>
#include <sys/errno.h>
#include <t18x_ari.h>
/*******************************************************************************
* Register offsets for ARI request/results
******************************************************************************/
#define ARI_REQUEST 0x0
#define ARI_REQUEST_EVENT_MASK 0x4
#define ARI_STATUS 0x8
#define ARI_REQUEST_DATA_LO 0xC
#define ARI_REQUEST_DATA_HI 0x10
#define ARI_RESPONSE_DATA_LO 0x14
#define ARI_RESPONSE_DATA_HI 0x18
/* Status values for the current request */
#define ARI_REQ_PENDING 1U
#define ARI_REQ_ONGOING 3U
#define ARI_REQUEST_VALID_BIT (1U << 8)
#define ARI_EVT_MASK_STANDBYWFI_BIT (1U << 7)
/* default timeout (ms) to wait for ARI completion */
#define ARI_MAX_RETRY_COUNT 2000
/*******************************************************************************
* ARI helper functions
******************************************************************************/
static inline uint32_t ari_read_32(uint32_t ari_base, uint32_t reg)
{
return mmio_read_32(ari_base + reg);
}
static inline void ari_write_32(uint32_t ari_base, uint32_t val, uint32_t reg)
{
mmio_write_32(ari_base + reg, val);
}
static inline uint32_t ari_get_request_low(uint32_t ari_base)
{
return ari_read_32(ari_base, ARI_REQUEST_DATA_LO);
}
static inline uint32_t ari_get_request_high(uint32_t ari_base)
{
return ari_read_32(ari_base, ARI_REQUEST_DATA_HI);
}
static inline uint32_t ari_get_response_low(uint32_t ari_base)
{
return ari_read_32(ari_base, ARI_RESPONSE_DATA_LO);
}
static inline uint32_t ari_get_response_high(uint32_t ari_base)
{
return ari_read_32(ari_base, ARI_RESPONSE_DATA_HI);
}
static inline void ari_clobber_response(uint32_t ari_base)
{
ari_write_32(ari_base, 0, ARI_RESPONSE_DATA_LO);
ari_write_32(ari_base, 0, ARI_RESPONSE_DATA_HI);
}
static int ari_request_wait(uint32_t ari_base, uint32_t evt_mask, uint32_t req,
uint32_t lo, uint32_t hi)
{
uint32_t retries = ARI_MAX_RETRY_COUNT;
uint32_t status;
/* program the request, event_mask, hi and lo registers */
ari_write_32(ari_base, lo, ARI_REQUEST_DATA_LO);
ari_write_32(ari_base, hi, ARI_REQUEST_DATA_HI);
ari_write_32(ari_base, evt_mask, ARI_REQUEST_EVENT_MASK);
ari_write_32(ari_base, req | ARI_REQUEST_VALID_BIT, ARI_REQUEST);
/*
* For commands that have an event trigger, we should bypass
* ARI_STATUS polling, since MCE is waiting for SW to trigger
* the event.
*/
if (evt_mask)
return 0;
/* For shutdown/reboot commands, we dont have to check for timeouts */
if ((req == (uint32_t)TEGRA_ARI_MISC_CCPLEX) &&
((lo == (uint32_t)TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_POWER_OFF) ||
(lo == (uint32_t)TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_REBOOT))) {
return 0;
}
/*
* Wait for the command response for not more than the timeout
*/
while (retries != 0U) {
/* read the command status */
status = ari_read_32(ari_base, ARI_STATUS);
if ((status & (ARI_REQ_ONGOING | ARI_REQ_PENDING)) == 0U)
break;
/* delay 1 ms */
mdelay(1);
/* decrement the retry count */
retries--;
}
/* assert if the command timed out */
if (retries == 0U) {
ERROR("ARI request timed out: req %d on CPU %d\n",
req, plat_my_core_pos());
assert(retries != 0U);
}
return 0;
}
int ari_enter_cstate(uint32_t ari_base, uint32_t state, uint32_t wake_time)
{
/* check for allowed power state */
if (state != TEGRA_ARI_CORE_C0 && state != TEGRA_ARI_CORE_C1 &&
state != TEGRA_ARI_CORE_C6 && state != TEGRA_ARI_CORE_C7) {
ERROR("%s: unknown cstate (%d)\n", __func__, state);
return EINVAL;
}
/* clean the previous response state */
ari_clobber_response(ari_base);
/* Enter the cstate, to be woken up after wake_time (TSC ticks) */
return ari_request_wait(ari_base, ARI_EVT_MASK_STANDBYWFI_BIT,
TEGRA_ARI_ENTER_CSTATE, state, wake_time);
}
int ari_update_cstate_info(uint32_t ari_base, uint32_t cluster, uint32_t ccplex,
uint32_t system, uint8_t sys_state_force, uint32_t wake_mask,
uint8_t update_wake_mask)
{
uint32_t val = 0;
/* clean the previous response state */
ari_clobber_response(ari_base);
/* update CLUSTER_CSTATE? */
if (cluster)
val |= (cluster & CLUSTER_CSTATE_MASK) |
CLUSTER_CSTATE_UPDATE_BIT;
/* update CCPLEX_CSTATE? */
if (ccplex)
val |= (ccplex & CCPLEX_CSTATE_MASK) << CCPLEX_CSTATE_SHIFT |
CCPLEX_CSTATE_UPDATE_BIT;
/* update SYSTEM_CSTATE? */
if (system)
val |= ((system & SYSTEM_CSTATE_MASK) << SYSTEM_CSTATE_SHIFT) |
((sys_state_force << SYSTEM_CSTATE_FORCE_UPDATE_SHIFT) |
SYSTEM_CSTATE_UPDATE_BIT);
/* update wake mask value? */
if (update_wake_mask)
val |= CSTATE_WAKE_MASK_UPDATE_BIT;
/* set the updated cstate info */
return ari_request_wait(ari_base, 0, TEGRA_ARI_UPDATE_CSTATE_INFO, val,
wake_mask);
}
int ari_update_crossover_time(uint32_t ari_base, uint32_t type, uint32_t time)
{
/* sanity check crossover type */
if ((type == TEGRA_ARI_CROSSOVER_C1_C6) ||
(type > TEGRA_ARI_CROSSOVER_CCP3_SC1))
return EINVAL;
/* clean the previous response state */
ari_clobber_response(ari_base);
/* update crossover threshold time */
return ari_request_wait(ari_base, 0, TEGRA_ARI_UPDATE_CROSSOVER,
type, time);
}
uint64_t ari_read_cstate_stats(uint32_t ari_base, uint32_t state)
{
int ret;
/* sanity check crossover type */
if (state == 0)
return EINVAL;
/* clean the previous response state */
ari_clobber_response(ari_base);
ret = ari_request_wait(ari_base, 0, TEGRA_ARI_CSTATE_STATS, state, 0);
if (ret != 0)
return EINVAL;
return (uint64_t)ari_get_response_low(ari_base);
}
int ari_write_cstate_stats(uint32_t ari_base, uint32_t state, uint32_t stats)
{
/* clean the previous response state */
ari_clobber_response(ari_base);
/* write the cstate stats */
return ari_request_wait(ari_base, 0, TEGRA_ARI_WRITE_CSTATE_STATS, state,
stats);
}
uint64_t ari_enumeration_misc(uint32_t ari_base, uint32_t cmd, uint32_t data)
{
uint64_t resp;
int ret;
/* clean the previous response state */
ari_clobber_response(ari_base);
/* ARI_REQUEST_DATA_HI is reserved for commands other than 'ECHO' */
if (cmd != TEGRA_ARI_MISC_ECHO)
data = 0;
ret = ari_request_wait(ari_base, 0, TEGRA_ARI_MISC, cmd, data);
if (ret)
return (uint64_t)ret;
/* get the command response */
resp = ari_get_response_low(ari_base);
resp |= ((uint64_t)ari_get_response_high(ari_base) << 32);
return resp;
}
int ari_is_ccx_allowed(uint32_t ari_base, uint32_t state, uint32_t wake_time)
{
int ret;
/* clean the previous response state */
ari_clobber_response(ari_base);
ret = ari_request_wait(ari_base, 0, TEGRA_ARI_IS_CCX_ALLOWED, state & 0x7,
wake_time);
if (ret) {
ERROR("%s: failed (%d)\n", __func__, ret);
return 0;
}
/* 1 = CCx allowed, 0 = CCx not allowed */
return (ari_get_response_low(ari_base) & 0x1);
}
int ari_is_sc7_allowed(uint32_t ari_base, uint32_t state, uint32_t wake_time)
{
int ret;
/* check for allowed power state */
if (state != TEGRA_ARI_CORE_C0 && state != TEGRA_ARI_CORE_C1 &&
state != TEGRA_ARI_CORE_C6 && state != TEGRA_ARI_CORE_C7) {
ERROR("%s: unknown cstate (%d)\n", __func__, state);
return EINVAL;
}
/* clean the previous response state */
ari_clobber_response(ari_base);
ret = ari_request_wait(ari_base, 0, TEGRA_ARI_IS_SC7_ALLOWED, state,
wake_time);
if (ret) {
ERROR("%s: failed (%d)\n", __func__, ret);
return 0;
}
/* 1 = SC7 allowed, 0 = SC7 not allowed */
return !!ari_get_response_low(ari_base);
}
int ari_online_core(uint32_t ari_base, uint32_t core)
{
uint32_t cpu = read_mpidr() & MPIDR_CPU_MASK;
int cluster = (read_mpidr() & MPIDR_CLUSTER_MASK) >>
MPIDR_AFFINITY_BITS;
int impl = (read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK;
/* construct the current CPU # */
cpu |= (cluster << 2);
/* sanity check target core id */
if ((core >= (uint32_t)MCE_CORE_ID_MAX) || (cpu == core)) {
ERROR("%s: unsupported core id (%d)\n", __func__, core);
return EINVAL;
}
/*
* The Denver cluster has 2 CPUs only - 0, 1.
*/
if (impl == DENVER_IMPL && ((core == 2) || (core == 3))) {
ERROR("%s: unknown core id (%d)\n", __func__, core);
return EINVAL;
}
/* clean the previous response state */
ari_clobber_response(ari_base);
return ari_request_wait(ari_base, 0, TEGRA_ARI_ONLINE_CORE, core, 0);
}
int ari_cc3_ctrl(uint32_t ari_base, uint32_t freq, uint32_t volt, uint8_t enable)
{
int val;
/* clean the previous response state */
ari_clobber_response(ari_base);
/*
* If the enable bit is cleared, Auto-CC3 will be disabled by setting
* the SW visible voltage/frequency request registers for all non
* floorswept cores valid independent of StandbyWFI and disabling
* the IDLE voltage/frequency request register. If set, Auto-CC3
* will be enabled by setting the ARM SW visible voltage/frequency
* request registers for all non floorswept cores to be enabled by
* StandbyWFI or the equivalent signal, and always keeping the IDLE
* voltage/frequency request register enabled.
*/
val = (((freq & MCE_AUTO_CC3_FREQ_MASK) << MCE_AUTO_CC3_FREQ_SHIFT) |\
((volt & MCE_AUTO_CC3_VTG_MASK) << MCE_AUTO_CC3_VTG_SHIFT) |\
(enable ? MCE_AUTO_CC3_ENABLE_BIT : 0));
return ari_request_wait(ari_base, 0, TEGRA_ARI_CC3_CTRL, val, 0);
}
int ari_reset_vector_update(uint32_t ari_base)
{
/* clean the previous response state */
ari_clobber_response(ari_base);
/*
* Need to program the CPU reset vector one time during cold boot
* and SC7 exit
*/
ari_request_wait(ari_base, 0, TEGRA_ARI_COPY_MISCREG_AA64_RST, 0, 0);
return 0;
}
int ari_roc_flush_cache_trbits(uint32_t ari_base)
{
/* clean the previous response state */
ari_clobber_response(ari_base);
return ari_request_wait(ari_base, 0, TEGRA_ARI_ROC_FLUSH_CACHE_TRBITS,
0, 0);
}
int ari_roc_flush_cache(uint32_t ari_base)
{
/* clean the previous response state */
ari_clobber_response(ari_base);
return ari_request_wait(ari_base, 0, TEGRA_ARI_ROC_FLUSH_CACHE_ONLY,
0, 0);
}
int ari_roc_clean_cache(uint32_t ari_base)
{
/* clean the previous response state */
ari_clobber_response(ari_base);
return ari_request_wait(ari_base, 0, TEGRA_ARI_ROC_CLEAN_CACHE_ONLY,
0, 0);
}
uint64_t ari_read_write_mca(uint32_t ari_base, mca_cmd_t cmd, uint64_t *data)
{
mca_arg_t mca_arg;
int ret;
/* Set data (write) */
mca_arg.data = data ? *data : 0ull;
/* Set command */
ari_write_32(ari_base, cmd.input.low, ARI_RESPONSE_DATA_LO);
ari_write_32(ari_base, cmd.input.high, ARI_RESPONSE_DATA_HI);
ret = ari_request_wait(ari_base, 0, TEGRA_ARI_MCA, mca_arg.arg.low,
mca_arg.arg.high);
if (!ret) {
mca_arg.arg.low = ari_get_response_low(ari_base);
mca_arg.arg.high = ari_get_response_high(ari_base);
if (!mca_arg.err.finish)
return (uint64_t)mca_arg.err.error;
if (data) {
mca_arg.arg.low = ari_get_request_low(ari_base);
mca_arg.arg.high = ari_get_request_high(ari_base);
*data = mca_arg.data;
}
}
return 0;
}
int ari_update_ccplex_gsc(uint32_t ari_base, uint32_t gsc_idx)
{
/* sanity check GSC ID */
if (gsc_idx > TEGRA_ARI_GSC_VPR_IDX)
return EINVAL;
/* clean the previous response state */
ari_clobber_response(ari_base);
/*
* The MCE code will read the GSC carveout value, corrseponding to
* the ID, from the MC registers and update the internal GSC registers
* of the CCPLEX.
*/
ari_request_wait(ari_base, 0, TEGRA_ARI_UPDATE_CCPLEX_GSC, gsc_idx, 0);
return 0;
}
void ari_enter_ccplex_state(uint32_t ari_base, uint32_t state_idx)
{
/* clean the previous response state */
ari_clobber_response(ari_base);
/*
* The MCE will shutdown or restart the entire system
*/
(void)ari_request_wait(ari_base, 0, TEGRA_ARI_MISC_CCPLEX, state_idx, 0);
}
int ari_read_write_uncore_perfmon(uint32_t ari_base,
uncore_perfmon_req_t req, uint64_t *data)
{
int ret;
uint32_t val;
/* clean the previous response state */
ari_clobber_response(ari_base);
/* sanity check input parameters */
if (req.perfmon_command.cmd == UNCORE_PERFMON_CMD_READ && !data) {
ERROR("invalid parameters\n");
return EINVAL;
}
/*
* For "write" commands get the value that has to be written
* to the uncore perfmon registers
*/
val = (req.perfmon_command.cmd == UNCORE_PERFMON_CMD_WRITE) ?
*data : 0;
ret = ari_request_wait(ari_base, 0, TEGRA_ARI_PERFMON, val, req.data);
if (ret)
return ret;
/* read the command status value */
req.perfmon_status.val = ari_get_response_high(ari_base) &
UNCORE_PERFMON_RESP_STATUS_MASK;
/*
* For "read" commands get the data from the uncore
* perfmon registers
*/
if ((req.perfmon_status.val == 0) && (req.perfmon_command.cmd ==
UNCORE_PERFMON_CMD_READ))
*data = ari_get_response_low(ari_base);
return (int)req.perfmon_status.val;
}
void ari_misc_ccplex(uint32_t ari_base, uint32_t index, uint32_t value)
{
/*
* This invokes the ARI_MISC_CCPLEX commands. This can be
* used to enable/disable coresight clock gating.
*/
if ((index > TEGRA_ARI_MISC_CCPLEX_EDBGREQ) ||
((index == TEGRA_ARI_MISC_CCPLEX_CORESIGHT_CG_CTRL) &&
(value > 1))) {
ERROR("%s: invalid parameters \n", __func__);
return;
}
/* clean the previous response state */
ari_clobber_response(ari_base);
(void)ari_request_wait(ari_base, 0, TEGRA_ARI_MISC_CCPLEX, index, value);
}