arm-trusted-firmware/plat/nvidia/tegra/soc/t186/drivers/se/se.c

279 lines
7.9 KiB
C

/*
* Copyright (c) 2020, NVIDIA Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <drivers/delay_timer.h>
#include <errno.h>
#include <string.h>
#include <bpmp_ipc.h>
#include <pmc.h>
#include <security_engine.h>
#include <tegra186_private.h>
#include <tegra_private.h>
#include "se_private.h"
/*******************************************************************************
* Constants and Macros
******************************************************************************/
#define SE0_MAX_BUSY_TIMEOUT_MS U(100) /* 100ms */
#define BYTES_IN_WORD U(4)
#define SHA256_MAX_HASH_RESULT U(7)
#define SHA256_DST_SIZE U(32)
#define SHA_FIRST_OP U(1)
#define MAX_SHA_ENGINE_CHUNK_SIZE U(0xFFFFFF)
#define SHA256_MSG_LENGTH_ONETIME U(0xffff)
/*
* Check that SE operation has completed after kickoff
* This function is invoked after an SE operation has been started,
* and it checks the following conditions:
* 1. SE0_INT_STATUS = SE0_OP_DONE
* 2. SE0_STATUS = IDLE
* 3. SE0_ERR_STATUS is clean.
*/
static int32_t tegra_se_operation_complete(void)
{
uint32_t val = 0U;
/* Read SE0 interrupt register to ensure H/W operation complete */
val = tegra_se_read_32(SE0_INT_STATUS_REG_OFFSET);
if (SE0_INT_OP_DONE(val) == SE0_INT_OP_DONE_CLEAR) {
ERROR("%s: Engine busy state too many times! val = 0x%x\n",
__func__, val);
return -ETIMEDOUT;
}
/* Read SE0 status idle to ensure H/W operation complete */
val = tegra_se_read_32(SE0_SHA_STATUS_0);
if (val != SE0_SHA_STATUS_IDLE) {
ERROR("%s: Idle state timeout! val = 0x%x\n", __func__,
val);
return -ETIMEDOUT;
}
/* Ensure that no errors are thrown during operation */
val = tegra_se_read_32(SE0_ERR_STATUS_REG_OFFSET);
if (val != SE0_ERR_STATUS_CLEAR) {
ERROR("%s: Error during SE operation! val = 0x%x",
__func__, val);
return -ENOTSUP;
}
return 0;
}
/*
* Security engine primitive normal operations
*/
static int32_t tegra_se_start_normal_operation(uint64_t src_addr,
uint32_t nbytes, uint32_t last_buf, uint32_t src_len_inbytes)
{
int32_t ret = 0;
uint32_t val = 0U;
uint32_t src_in_lo;
uint32_t src_in_msb;
uint32_t src_in_hi;
if ((src_addr == 0UL) || (nbytes == 0U))
return -EINVAL;
src_in_lo = (uint32_t)src_addr;
src_in_msb = ((uint32_t)(src_addr >> 32U) & 0xffU);
src_in_hi = ((src_in_msb << SE0_IN_HI_ADDR_HI_0_MSB_SHIFT) |
(nbytes & 0xffffffU));
/* set SRC_IN_ADDR_LO and SRC_IN_ADDR_HI*/
tegra_se_write_32(SE0_IN_ADDR, src_in_lo);
tegra_se_write_32(SE0_IN_HI_ADDR_HI, src_in_hi);
val = tegra_se_read_32(SE0_INT_STATUS_REG_OFFSET);
if (val > 0U) {
tegra_se_write_32(SE0_INT_STATUS_REG_OFFSET, 0x00000U);
}
/* Enable SHA interrupt for SE0 Operation */
tegra_se_write_32(SE0_SHA_INT_ENABLE, 0x1aU);
/* flush to DRAM for SE to use the updated contents */
flush_dcache_range(src_addr, src_len_inbytes);
/* Start SHA256 operation */
if (last_buf == 1U) {
tegra_se_write_32(SE0_OPERATION_REG_OFFSET, SE0_OP_START |
SE0_UNIT_OPERATION_PKT_LASTBUF_FIELD);
} else {
tegra_se_write_32(SE0_OPERATION_REG_OFFSET, SE0_OP_START);
}
/* Wait for SE-operation to finish */
udelay(SE0_MAX_BUSY_TIMEOUT_MS * 100U);
/* Check SE0 operation status */
ret = tegra_se_operation_complete();
if (ret != 0) {
ERROR("SE operation complete Failed! 0x%x", ret);
return ret;
}
return 0;
}
static int32_t tegra_se_calculate_sha256_hash(uint64_t src_addr,
uint32_t src_len_inbyte)
{
uint32_t val, last_buf, i;
int32_t ret = 0;
uint32_t operations;
uint64_t src_len_inbits;
uint32_t len_bits_msb;
uint32_t len_bits_lsb;
uint32_t number_of_operations, max_bytes, bytes_left, remaining_bytes;
if (src_len_inbyte > MAX_SHA_ENGINE_CHUNK_SIZE) {
ERROR("SHA input chunk size too big: 0x%x\n", src_len_inbyte);
return -EINVAL;
}
if (src_addr == 0UL) {
return -EINVAL;
}
/* number of bytes per operation */
max_bytes = SHA256_HASH_SIZE_BYTES * SHA256_MSG_LENGTH_ONETIME;
src_len_inbits = src_len_inbyte * 8U;
len_bits_msb = (uint32_t)(src_len_inbits >> 32U);
len_bits_lsb = (uint32_t)(src_len_inbits & 0xFFFFFFFF);
/* program SE0_CONFIG for SHA256 operation */
val = SE0_CONFIG_ENC_ALG_SHA | SE0_CONFIG_ENC_MODE_SHA256 |
SE0_CONFIG_DEC_ALG_NOP | SE0_CONFIG_DST_HASHREG;
tegra_se_write_32(SE0_SHA_CONFIG, val);
/* set SE0_SHA_MSG_LENGTH registers */
tegra_se_write_32(SE0_SHA_MSG_LENGTH_0, len_bits_lsb);
tegra_se_write_32(SE0_SHA_MSG_LEFT_0, len_bits_lsb);
tegra_se_write_32(SE0_SHA_MSG_LENGTH_1, len_bits_msb);
/* zero out unused SE0_SHA_MSG_LENGTH and SE0_SHA_MSG_LEFT */
tegra_se_write_32(SE0_SHA_MSG_LENGTH_2, 0U);
tegra_se_write_32(SE0_SHA_MSG_LENGTH_3, 0U);
tegra_se_write_32(SE0_SHA_MSG_LEFT_1, 0U);
tegra_se_write_32(SE0_SHA_MSG_LEFT_2, 0U);
tegra_se_write_32(SE0_SHA_MSG_LEFT_3, 0U);
number_of_operations = src_len_inbyte / max_bytes;
remaining_bytes = src_len_inbyte % max_bytes;
if (remaining_bytes > 0U) {
number_of_operations += 1U;
}
/*
* 1. Operations == 1: program SE0_SHA_TASK register to initiate SHA256
* hash generation by setting
* 1(SE0_SHA_CONFIG_HW_INIT_HASH) to SE0_SHA_TASK
* and start SHA256-normal operation.
* 2. 1 < Operations < number_of_operations: program SE0_SHA_TASK to
* 0(SE0_SHA_CONFIG_HW_INIT_HASH_DISABLE) to load
* intermediate SHA256 digest result from
* HASH_RESULT register to continue SHA256
* generation and start SHA256-normal operation.
* 3. Operations == number_of_operations: continue with step 2 and set
* max_bytes to bytes_left to process final
* hash-result generation and
* start SHA256-normal operation.
*/
bytes_left = src_len_inbyte;
for (operations = 1U; operations <= number_of_operations;
operations++) {
if (operations == SHA_FIRST_OP) {
val = SE0_SHA_CONFIG_HW_INIT_HASH;
} else {
/* Load intermediate SHA digest result to
* SHA:HASH_RESULT(0..7) to continue the SHA
* calculation and tell the SHA engine to use it.
*/
for (i = 0U; (i / BYTES_IN_WORD) <=
SHA256_MAX_HASH_RESULT; i += BYTES_IN_WORD) {
val = tegra_se_read_32(SE0_SHA_HASH_RESULT_0 +
i);
tegra_se_write_32(SE0_SHA_HASH_RESULT_0 + i,
val);
}
val = SE0_SHA_CONFIG_HW_INIT_HASH_DISABLE;
if (len_bits_lsb <= (max_bytes * 8U)) {
len_bits_lsb = (remaining_bytes * 8U);
} else {
len_bits_lsb -= (max_bytes * 8U);
}
tegra_se_write_32(SE0_SHA_MSG_LEFT_0, len_bits_lsb);
}
tegra_se_write_32(SE0_SHA_TASK_CONFIG, val);
max_bytes = (SHA256_HASH_SIZE_BYTES *
SHA256_MSG_LENGTH_ONETIME);
if (bytes_left < max_bytes) {
max_bytes = bytes_left;
last_buf = 1U;
} else {
bytes_left = bytes_left - max_bytes;
last_buf = 0U;
}
/* start operation */
ret = tegra_se_start_normal_operation(src_addr, max_bytes,
last_buf, src_len_inbyte);
if (ret != 0) {
ERROR("Error during SE operation! 0x%x", ret);
return -EINVAL;
}
}
return ret;
}
/*
* Handler to generate SHA256 and save SHA256 hash to PMC-Scratch register.
*/
int32_t tegra_se_save_sha256_hash(uint64_t bl31_base, uint32_t src_len_inbyte)
{
int32_t ret = 0;
uint32_t val = 0U, hash_offset = 0U, scratch_offset = 0U, security;
/*
* Set SE_SOFT_SETTINGS=SE_SECURE to prevent NS process to change SE
* registers.
*/
security = tegra_se_read_32(SE0_SECURITY);
tegra_se_write_32(SE0_SECURITY, security | SE0_SECURITY_SE_SOFT_SETTING);
ret = tegra_se_calculate_sha256_hash(bl31_base, src_len_inbyte);
if (ret != 0L) {
ERROR("%s: SHA256 generation failed\n", __func__);
return ret;
}
/*
* Reset SE_SECURE to previous value.
*/
tegra_se_write_32(SE0_SECURITY, security);
/* read SHA256_HASH_RESULT and save to PMC Scratch registers */
scratch_offset = SECURE_SCRATCH_TZDRAM_SHA256_HASH_START;
while (scratch_offset <= SECURE_SCRATCH_TZDRAM_SHA256_HASH_END) {
val = tegra_se_read_32(SE0_SHA_HASH_RESULT_0 + hash_offset);
mmio_write_32(TEGRA_SCRATCH_BASE + scratch_offset, val);
hash_offset += BYTES_IN_WORD;
scratch_offset += BYTES_IN_WORD;
}
return ret;
}