arm-trusted-firmware/drivers/brcm/spi/iproc_qspi.c

318 lines
7.4 KiB
C

/*
* Copyright (c) 2017 - 2020, Broadcom
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <string.h>
#include <common/debug.h>
#include <drivers/delay_timer.h>
#include <endian.h>
#include <lib/mmio.h>
#include <platform_def.h>
#include <spi.h>
#include "iproc_qspi.h"
struct bcmspi_priv spi_cfg;
/* Redefined by platform to force appropriate information */
#pragma weak plat_spi_init
int plat_spi_init(uint32_t *max_hz)
{
return 0;
}
/* Initialize & setup iproc qspi controller */
int iproc_qspi_setup(uint32_t bus, uint32_t cs, uint32_t max_hz, uint32_t mode)
{
struct bcmspi_priv *priv = NULL;
uint32_t spbr;
priv = &spi_cfg;
priv->spi_mode = mode;
priv->state = QSPI_STATE_DISABLED;
priv->bspi_hw = QSPI_BSPI_MODE_REG_BASE;
priv->mspi_hw = QSPI_MSPI_MODE_REG_BASE;
/* Initialize clock and platform specific */
if (plat_spi_init(&max_hz) != 0)
return -1;
priv->max_hz = max_hz;
/* MSPI: Basic hardware initialization */
mmio_write_32(priv->mspi_hw + MSPI_SPCR1_LSB_REG, 0);
mmio_write_32(priv->mspi_hw + MSPI_SPCR1_MSB_REG, 0);
mmio_write_32(priv->mspi_hw + MSPI_NEWQP_REG, 0);
mmio_write_32(priv->mspi_hw + MSPI_ENDQP_REG, 0);
mmio_write_32(priv->mspi_hw + MSPI_SPCR2_REG, 0);
/* MSPI: SCK configuration */
spbr = (QSPI_AXI_CLK - 1) / (2 * priv->max_hz) + 1;
spbr = MIN(spbr, SPBR_DIV_MAX);
spbr = MAX(spbr, SPBR_DIV_MIN);
mmio_write_32(priv->mspi_hw + MSPI_SPCR0_LSB_REG, spbr);
/* MSPI: Mode configuration (8 bits by default) */
priv->mspi_16bit = 0;
mmio_write_32(priv->mspi_hw + MSPI_SPCR0_MSB_REG,
BIT(MSPI_SPCR0_MSB_REG_MSTR_SHIFT) | /* Master */
MSPI_SPCR0_MSB_REG_16_BITS_PER_WD_SHIFT | /* 16 bits per word */
(priv->spi_mode & MSPI_SPCR0_MSB_REG_MODE_MASK)); /* mode: CPOL / CPHA */
/* Display bus info */
VERBOSE("SPI: SPCR0_LSB: 0x%x\n",
mmio_read_32(priv->mspi_hw + MSPI_SPCR0_LSB_REG));
VERBOSE("SPI: SPCR0_MSB: 0x%x\n",
mmio_read_32(priv->mspi_hw + MSPI_SPCR0_MSB_REG));
VERBOSE("SPI: SPCR1_LSB: 0x%x\n",
mmio_read_32(priv->mspi_hw + MSPI_SPCR1_LSB_REG));
VERBOSE("SPI: SPCR1_MSB: 0x%x\n",
mmio_read_32(priv->mspi_hw + MSPI_SPCR1_MSB_REG));
VERBOSE("SPI: SPCR2: 0x%x\n",
mmio_read_32(priv->mspi_hw + MSPI_SPCR2_REG));
VERBOSE("SPI: CLK: %d\n", priv->max_hz);
return 0;
}
void bcmspi_enable_bspi(struct bcmspi_priv *priv)
{
if (priv->state != QSPI_STATE_BSPI) {
/* Switch to BSPI */
mmio_write_32(priv->bspi_hw + BSPI_MAST_N_BOOT_CTRL_REG, 0);
priv->state = QSPI_STATE_BSPI;
}
}
static int bcmspi_disable_bspi(struct bcmspi_priv *priv)
{
uint32_t retry;
if (priv->state == QSPI_STATE_MSPI)
return 0;
/* Switch to MSPI if not yet */
if ((mmio_read_32(priv->bspi_hw + BSPI_MAST_N_BOOT_CTRL_REG) &
MSPI_CTRL_MASK) == 0) {
retry = QSPI_RETRY_COUNT_US_MAX;
do {
if ((mmio_read_32(
priv->bspi_hw + BSPI_BUSY_STATUS_REG) &
BSPI_BUSY_MASK) == 0) {
mmio_write_32(priv->bspi_hw +
BSPI_MAST_N_BOOT_CTRL_REG,
MSPI_CTRL_MASK);
udelay(1);
break;
}
udelay(1);
} while (retry--);
if ((mmio_read_32(priv->bspi_hw + BSPI_MAST_N_BOOT_CTRL_REG) &
MSPI_CTRL_MASK) != MSPI_CTRL_MASK) {
ERROR("QSPI: Switching to QSPI error.\n");
return -1;
}
}
/* Update state */
priv->state = QSPI_STATE_MSPI;
return 0;
}
int iproc_qspi_claim_bus(void)
{
struct bcmspi_priv *priv = &spi_cfg;
/* Switch to MSPI by default */
if (bcmspi_disable_bspi(priv) != 0)
return -1;
return 0;
}
void iproc_qspi_release_bus(void)
{
struct bcmspi_priv *priv = &spi_cfg;
/* Switch to BSPI by default */
bcmspi_enable_bspi(priv);
}
static int mspi_xfer(struct bcmspi_priv *priv, uint32_t bytes,
const uint8_t *tx, uint8_t *rx, uint32_t flag)
{
uint32_t retry;
uint32_t mode = CDRAM_PCS0;
if (flag & SPI_XFER_QUAD) {
mode |= CDRAM_QUAD_MODE;
VERBOSE("SPI: QUAD mode\n");
if (!tx) {
VERBOSE("SPI: 4 lane input\n");
mode |= CDRAM_RBIT_INPUT;
}
}
/* Use 8-bit queue for odd-bytes transfer */
if (bytes & 1)
priv->mspi_16bit = 0;
else {
priv->mspi_16bit = 1;
mode |= CDRAM_BITS_EN;
}
while (bytes) {
uint32_t chunk;
uint32_t queues;
uint32_t i;
/* Separate code for 16bit and 8bit transfers for performance */
if (priv->mspi_16bit) {
VERBOSE("SPI: 16 bits xfer\n");
/* Determine how many bytes to process this time */
chunk = MIN(bytes, NUM_CDRAM_BYTES * 2);
queues = (chunk - 1) / 2 + 1;
bytes -= chunk;
/* Fill CDRAMs */
for (i = 0; i < queues; i++)
mmio_write_32(priv->mspi_hw + MSPI_CDRAM_REG +
(i << 2), mode | CDRAM_CONT);
/* Fill TXRAMs */
for (i = 0; i < chunk; i++)
if (tx)
mmio_write_32(priv->mspi_hw +
MSPI_TXRAM_REG +
(i << 2), tx[i]);
} else {
VERBOSE("SPI: 8 bits xfer\n");
/* Determine how many bytes to process this time */
chunk = MIN(bytes, NUM_CDRAM_BYTES);
queues = chunk;
bytes -= chunk;
/* Fill CDRAMs and TXRAMS */
for (i = 0; i < chunk; i++) {
mmio_write_32(priv->mspi_hw + MSPI_CDRAM_REG +
(i << 2), mode | CDRAM_CONT);
if (tx)
mmio_write_32(priv->mspi_hw +
MSPI_TXRAM_REG +
(i << 3), tx[i]);
}
}
/* Advance pointers */
if (tx)
tx += chunk;
/* Setup queue pointers */
mmio_write_32(priv->mspi_hw + MSPI_NEWQP_REG, 0);
mmio_write_32(priv->mspi_hw + MSPI_ENDQP_REG, queues - 1);
/* Remove CONT on the last byte command */
if (bytes == 0 && (flag & SPI_XFER_END))
mmio_write_32(priv->mspi_hw + MSPI_CDRAM_REG +
((queues - 1) << 2), mode);
/* Kick off */
mmio_write_32(priv->mspi_hw + MSPI_STATUS_REG, 0);
if (bytes == 0 && (flag & SPI_XFER_END))
mmio_write_32(priv->mspi_hw + MSPI_SPCR2_REG, MSPI_SPE);
else
mmio_write_32(priv->mspi_hw + MSPI_SPCR2_REG,
MSPI_SPE | MSPI_CONT_AFTER_CMD);
/* Wait for completion */
retry = QSPI_RETRY_COUNT_US_MAX;
do {
if (mmio_read_32(priv->mspi_hw + MSPI_STATUS_REG) &
MSPI_CMD_COMPLETE_MASK)
break;
udelay(1);
} while (retry--);
if ((mmio_read_32(priv->mspi_hw + MSPI_STATUS_REG) &
MSPI_CMD_COMPLETE_MASK) == 0) {
ERROR("SPI: Completion timeout.\n");
return -1;
}
/* Read data out */
if (rx) {
if (priv->mspi_16bit) {
for (i = 0; i < chunk; i++) {
rx[i] = mmio_read_32(priv->mspi_hw +
MSPI_RXRAM_REG +
(i << 2))
& 0xff;
}
} else {
for (i = 0; i < chunk; i++) {
rx[i] = mmio_read_32(priv->mspi_hw +
MSPI_RXRAM_REG +
(((i << 1) + 1) << 2))
& 0xff;
}
}
rx += chunk;
}
}
return 0;
}
int iproc_qspi_xfer(uint32_t bitlen,
const void *dout, void *din, unsigned long flags)
{
struct bcmspi_priv *priv;
const uint8_t *tx = dout;
uint8_t *rx = din;
uint32_t bytes = bitlen / 8;
int ret = 0;
priv = &spi_cfg;
if (priv->state == QSPI_STATE_DISABLED) {
ERROR("QSPI: state disabled\n");
return -1;
}
/* we can only do 8 bit transfers */
if (bitlen % 8) {
ERROR("QSPI: Only support 8 bit transfers (requested %d)\n",
bitlen);
return -1;
}
/* MSPI: Enable write lock at the beginning */
if (flags & SPI_XFER_BEGIN) {
/* Switch to MSPI if not yet */
if (bcmspi_disable_bspi(priv) != 0) {
ERROR("QSPI: Switch to MSPI failed\n");
return -1;
}
mmio_write_32(priv->mspi_hw + MSPI_WRITE_LOCK_REG, 1);
}
/* MSPI: Transfer it */
if (bytes)
ret = mspi_xfer(priv, bytes, tx, rx, flags);
/* MSPI: Disable write lock if it's done */
if (flags & SPI_XFER_END)
mmio_write_32(priv->mspi_hw + MSPI_WRITE_LOCK_REG, 0);
return ret;
}