arm-trusted-firmware/plat/nvidia/tegra/common/drivers/flowctrl/flowctrl.c

323 lines
10 KiB
C

/*
* Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <arch_helpers.h>
#include <cortex_a53.h>
#include <common/debug.h>
#include <drivers/delay_timer.h>
#include <lib/mmio.h>
#include <flowctrl.h>
#include <lib/utils_def.h>
#include <pmc.h>
#include <tegra_def.h>
#define CLK_RST_DEV_L_SET 0x300
#define CLK_RST_DEV_L_CLR 0x304
#define CLK_BPMP_RST (1 << 1)
#define EVP_BPMP_RESET_VECTOR 0x200
static const uint64_t flowctrl_offset_cpu_csr[4] = {
(TEGRA_FLOWCTRL_BASE + FLOWCTRL_CPU0_CSR),
(TEGRA_FLOWCTRL_BASE + FLOWCTRL_CPU1_CSR),
(TEGRA_FLOWCTRL_BASE + FLOWCTRL_CPU1_CSR + 8),
(TEGRA_FLOWCTRL_BASE + FLOWCTRL_CPU1_CSR + 16)
};
static const uint64_t flowctrl_offset_halt_cpu[4] = {
(TEGRA_FLOWCTRL_BASE + FLOWCTRL_HALT_CPU0_EVENTS),
(TEGRA_FLOWCTRL_BASE + FLOWCTRL_HALT_CPU1_EVENTS),
(TEGRA_FLOWCTRL_BASE + FLOWCTRL_HALT_CPU1_EVENTS + 8),
(TEGRA_FLOWCTRL_BASE + FLOWCTRL_HALT_CPU1_EVENTS + 16)
};
static const uint64_t flowctrl_offset_cc4_ctrl[4] = {
(TEGRA_FLOWCTRL_BASE + FLOWCTRL_CC4_CORE0_CTRL),
(TEGRA_FLOWCTRL_BASE + FLOWCTRL_CC4_CORE0_CTRL + 4),
(TEGRA_FLOWCTRL_BASE + FLOWCTRL_CC4_CORE0_CTRL + 8),
(TEGRA_FLOWCTRL_BASE + FLOWCTRL_CC4_CORE0_CTRL + 12)
};
static inline void tegra_fc_cc4_ctrl(int cpu_id, uint32_t val)
{
mmio_write_32(flowctrl_offset_cc4_ctrl[cpu_id], val);
val = mmio_read_32(flowctrl_offset_cc4_ctrl[cpu_id]);
}
static inline void tegra_fc_cpu_csr(int cpu_id, uint32_t val)
{
mmio_write_32(flowctrl_offset_cpu_csr[cpu_id], val);
val = mmio_read_32(flowctrl_offset_cpu_csr[cpu_id]);
}
static inline void tegra_fc_halt_cpu(int cpu_id, uint32_t val)
{
mmio_write_32(flowctrl_offset_halt_cpu[cpu_id], val);
val = mmio_read_32(flowctrl_offset_halt_cpu[cpu_id]);
}
static void tegra_fc_prepare_suspend(int cpu_id, uint32_t csr)
{
uint32_t val;
val = FLOWCTRL_HALT_GIC_IRQ | FLOWCTRL_HALT_GIC_FIQ |
FLOWCTRL_HALT_LIC_IRQ | FLOWCTRL_HALT_LIC_FIQ |
FLOWCTRL_WAITEVENT;
tegra_fc_halt_cpu(cpu_id, val);
val = FLOWCTRL_CSR_INTR_FLAG | FLOWCTRL_CSR_EVENT_FLAG |
FLOWCTRL_CSR_ENABLE | (FLOWCTRL_WAIT_WFI_BITMAP << cpu_id);
tegra_fc_cpu_csr(cpu_id, val | csr);
}
/*******************************************************************************
* After this, no core can wake from C7 until the action is reverted.
* If a wake up event is asserted, the FC state machine will stall until
* the action is reverted.
******************************************************************************/
void tegra_fc_ccplex_pgexit_lock(void)
{
unsigned int i, cpu = read_mpidr() & MPIDR_CPU_MASK;
uint32_t flags = tegra_fc_read_32(FLOWCTRL_FC_SEQ_INTERCEPT) & ~INTERCEPT_IRQ_PENDING;;
uint32_t icept_cpu_flags[] = {
INTERCEPT_EXIT_PG_CORE0,
INTERCEPT_EXIT_PG_CORE1,
INTERCEPT_EXIT_PG_CORE2,
INTERCEPT_EXIT_PG_CORE3
};
/* set the intercept flags */
for (i = 0; i < ARRAY_SIZE(icept_cpu_flags); i++) {
/* skip current CPU */
if (i == cpu)
continue;
/* enable power gate exit intercept locks */
flags |= icept_cpu_flags[i];
}
tegra_fc_write_32(FLOWCTRL_FC_SEQ_INTERCEPT, flags);
(void)tegra_fc_read_32(FLOWCTRL_FC_SEQ_INTERCEPT);
}
/*******************************************************************************
* Revert the ccplex powergate exit locks
******************************************************************************/
void tegra_fc_ccplex_pgexit_unlock(void)
{
/* clear lock bits, clear pending interrupts */
tegra_fc_write_32(FLOWCTRL_FC_SEQ_INTERCEPT, INTERCEPT_IRQ_PENDING);
(void)tegra_fc_read_32(FLOWCTRL_FC_SEQ_INTERCEPT);
}
/*******************************************************************************
* Powerdn the current CPU
******************************************************************************/
void tegra_fc_cpu_powerdn(uint32_t mpidr)
{
int cpu = mpidr & MPIDR_CPU_MASK;
VERBOSE("CPU%d powering down...\n", cpu);
tegra_fc_prepare_suspend(cpu, 0);
}
/*******************************************************************************
* Suspend the current CPU cluster
******************************************************************************/
void tegra_fc_cluster_idle(uint32_t mpidr)
{
int cpu = mpidr & MPIDR_CPU_MASK;
uint32_t val;
VERBOSE("Entering cluster idle state...\n");
tegra_fc_cc4_ctrl(cpu, 0);
/* hardware L2 flush is faster for A53 only */
tegra_fc_write_32(FLOWCTRL_L2_FLUSH_CONTROL,
!!MPIDR_AFFLVL1_VAL(mpidr));
/* suspend the CPU cluster */
val = FLOWCTRL_PG_CPU_NONCPU << FLOWCTRL_ENABLE_EXT;
tegra_fc_prepare_suspend(cpu, val);
}
/*******************************************************************************
* Power down the current CPU cluster
******************************************************************************/
void tegra_fc_cluster_powerdn(uint32_t mpidr)
{
int cpu = mpidr & MPIDR_CPU_MASK;
uint32_t val;
VERBOSE("Entering cluster powerdn state...\n");
tegra_fc_cc4_ctrl(cpu, 0);
/* hardware L2 flush is faster for A53 only */
tegra_fc_write_32(FLOWCTRL_L2_FLUSH_CONTROL,
read_midr() == CORTEX_A53_MIDR);
/* power down the CPU cluster */
val = FLOWCTRL_TURNOFF_CPURAIL << FLOWCTRL_ENABLE_EXT;
tegra_fc_prepare_suspend(cpu, val);
}
/*******************************************************************************
* Check if cluster idle or power down state is allowed from this CPU
******************************************************************************/
bool tegra_fc_is_ccx_allowed(void)
{
unsigned int i, cpu = read_mpidr() & MPIDR_CPU_MASK;
uint32_t val;
bool ccx_allowed = true;
for (i = 0; i < ARRAY_SIZE(flowctrl_offset_cpu_csr); i++) {
/* skip current CPU */
if (i == cpu)
continue;
/* check if all other CPUs are already halted */
val = mmio_read_32(flowctrl_offset_cpu_csr[i]);
if ((val & FLOWCTRL_CSR_HALT_MASK) == 0U) {
ccx_allowed = false;
}
}
return ccx_allowed;
}
/*******************************************************************************
* Suspend the entire SoC
******************************************************************************/
void tegra_fc_soc_powerdn(uint32_t mpidr)
{
int cpu = mpidr & MPIDR_CPU_MASK;
uint32_t val;
VERBOSE("Entering SoC powerdn state...\n");
tegra_fc_cc4_ctrl(cpu, 0);
tegra_fc_write_32(FLOWCTRL_L2_FLUSH_CONTROL, 1);
val = FLOWCTRL_TURNOFF_CPURAIL << FLOWCTRL_ENABLE_EXT;
tegra_fc_prepare_suspend(cpu, val);
/* overwrite HALT register */
tegra_fc_halt_cpu(cpu, FLOWCTRL_WAITEVENT);
}
/*******************************************************************************
* Power up the CPU
******************************************************************************/
void tegra_fc_cpu_on(int cpu)
{
tegra_fc_cpu_csr(cpu, FLOWCTRL_CSR_ENABLE);
tegra_fc_halt_cpu(cpu, FLOWCTRL_WAITEVENT | FLOWCTRL_HALT_SCLK);
}
/*******************************************************************************
* Power down the CPU
******************************************************************************/
void tegra_fc_cpu_off(int cpu)
{
uint32_t val;
/*
* Flow controller powers down the CPU during wfi. The CPU would be
* powered on when it receives any interrupt.
*/
val = FLOWCTRL_CSR_INTR_FLAG | FLOWCTRL_CSR_EVENT_FLAG |
FLOWCTRL_CSR_ENABLE | (FLOWCTRL_WAIT_WFI_BITMAP << cpu);
tegra_fc_cpu_csr(cpu, val);
tegra_fc_halt_cpu(cpu, FLOWCTRL_WAITEVENT);
tegra_fc_cc4_ctrl(cpu, 0);
}
/*******************************************************************************
* Inform the BPMP that we have completed the cluster power up
******************************************************************************/
void tegra_fc_lock_active_cluster(void)
{
uint32_t val;
val = tegra_fc_read_32(FLOWCTRL_BPMP_CLUSTER_CONTROL);
val |= FLOWCTRL_BPMP_CLUSTER_PWRON_LOCK;
tegra_fc_write_32(FLOWCTRL_BPMP_CLUSTER_CONTROL, val);
val = tegra_fc_read_32(FLOWCTRL_BPMP_CLUSTER_CONTROL);
}
/*******************************************************************************
* Power ON BPMP processor
******************************************************************************/
void tegra_fc_bpmp_on(uint32_t entrypoint)
{
/* halt BPMP */
tegra_fc_write_32(FLOWCTRL_HALT_BPMP_EVENTS, FLOWCTRL_WAITEVENT);
/* Assert BPMP reset */
mmio_write_32(TEGRA_CAR_RESET_BASE + CLK_RST_DEV_L_SET, CLK_BPMP_RST);
/* Set reset address (stored in PMC_SCRATCH39) */
mmio_write_32(TEGRA_EVP_BASE + EVP_BPMP_RESET_VECTOR, entrypoint);
while (entrypoint != mmio_read_32(TEGRA_EVP_BASE + EVP_BPMP_RESET_VECTOR))
; /* wait till value reaches EVP_BPMP_RESET_VECTOR */
/* Wait for 2us before de-asserting the reset signal. */
udelay(2);
/* De-assert BPMP reset */
mmio_write_32(TEGRA_CAR_RESET_BASE + CLK_RST_DEV_L_CLR, CLK_BPMP_RST);
/* Un-halt BPMP */
tegra_fc_write_32(FLOWCTRL_HALT_BPMP_EVENTS, 0);
}
/*******************************************************************************
* Power OFF BPMP processor
******************************************************************************/
void tegra_fc_bpmp_off(void)
{
/* halt BPMP */
tegra_fc_write_32(FLOWCTRL_HALT_BPMP_EVENTS, FLOWCTRL_WAITEVENT);
/* Assert BPMP reset */
mmio_write_32(TEGRA_CAR_RESET_BASE + CLK_RST_DEV_L_SET, CLK_BPMP_RST);
/* Clear reset address */
mmio_write_32(TEGRA_EVP_BASE + EVP_BPMP_RESET_VECTOR, 0);
while (0 != mmio_read_32(TEGRA_EVP_BASE + EVP_BPMP_RESET_VECTOR))
; /* wait till value reaches EVP_BPMP_RESET_VECTOR */
}
/*******************************************************************************
* Route legacy FIQ to the GICD
******************************************************************************/
void tegra_fc_enable_fiq_to_ccplex_routing(void)
{
uint32_t val = tegra_fc_read_32(FLOW_CTLR_FLOW_DBG_QUAL);
/* set the bit to pass FIQs to the GICD */
tegra_fc_write_32(FLOW_CTLR_FLOW_DBG_QUAL, val | FLOWCTRL_FIQ2CCPLEX_ENABLE);
}
/*******************************************************************************
* Disable routing legacy FIQ to the GICD
******************************************************************************/
void tegra_fc_disable_fiq_to_ccplex_routing(void)
{
uint32_t val = tegra_fc_read_32(FLOW_CTLR_FLOW_DBG_QUAL);
/* clear the bit to pass FIQs to the GICD */
tegra_fc_write_32(FLOW_CTLR_FLOW_DBG_QUAL, val & ~FLOWCTRL_FIQ2CCPLEX_ENABLE);
}