arm-trusted-firmware/plat/common/plat_gicv2.c

223 lines
5.5 KiB
C

/*
* Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <gic_common.h>
#include <gicv2.h>
#include <interrupt_mgmt.h>
/*
* The following platform GIC functions are weakly defined. They
* provide typical implementations that may be re-used by multiple
* platforms but may also be overridden by a platform if required.
*/
#pragma weak plat_ic_get_pending_interrupt_id
#pragma weak plat_ic_get_pending_interrupt_type
#pragma weak plat_ic_acknowledge_interrupt
#pragma weak plat_ic_get_interrupt_type
#pragma weak plat_ic_end_of_interrupt
#pragma weak plat_interrupt_type_to_line
#pragma weak plat_ic_get_running_priority
#pragma weak plat_ic_is_spi
#pragma weak plat_ic_is_ppi
#pragma weak plat_ic_is_sgi
#pragma weak plat_ic_get_interrupt_active
#pragma weak plat_ic_enable_interrupt
#pragma weak plat_ic_disable_interrupt
#pragma weak plat_ic_set_interrupt_priority
#pragma weak plat_ic_set_interrupt_type
/*
* This function returns the highest priority pending interrupt at
* the Interrupt controller
*/
uint32_t plat_ic_get_pending_interrupt_id(void)
{
unsigned int id;
id = gicv2_get_pending_interrupt_id();
if (id == GIC_SPURIOUS_INTERRUPT)
return INTR_ID_UNAVAILABLE;
return id;
}
/*
* This function returns the type of the highest priority pending interrupt
* at the Interrupt controller. In the case of GICv2, the Highest Priority
* Pending interrupt register (`GICC_HPPIR`) is read to determine the id of
* the pending interrupt. The type of interrupt depends upon the id value
* as follows.
* 1. id < PENDING_G1_INTID (1022) is reported as a S-EL1 interrupt
* 2. id = PENDING_G1_INTID (1022) is reported as a Non-secure interrupt.
* 3. id = GIC_SPURIOUS_INTERRUPT (1023) is reported as an invalid interrupt
* type.
*/
uint32_t plat_ic_get_pending_interrupt_type(void)
{
unsigned int id;
id = gicv2_get_pending_interrupt_type();
/* Assume that all secure interrupts are S-EL1 interrupts */
if (id < PENDING_G1_INTID) {
#if GICV2_G0_FOR_EL3
return INTR_TYPE_EL3;
#else
return INTR_TYPE_S_EL1;
#endif
}
if (id == GIC_SPURIOUS_INTERRUPT)
return INTR_TYPE_INVAL;
return INTR_TYPE_NS;
}
/*
* This function returns the highest priority pending interrupt at
* the Interrupt controller and indicates to the Interrupt controller
* that the interrupt processing has started.
*/
uint32_t plat_ic_acknowledge_interrupt(void)
{
return gicv2_acknowledge_interrupt();
}
/*
* This function returns the type of the interrupt `id`, depending on how
* the interrupt has been configured in the interrupt controller
*/
uint32_t plat_ic_get_interrupt_type(uint32_t id)
{
unsigned int type;
type = gicv2_get_interrupt_group(id);
/* Assume that all secure interrupts are S-EL1 interrupts */
return type == GICV2_INTR_GROUP1 ? INTR_TYPE_NS :
#if GICV2_G0_FOR_EL3
INTR_TYPE_EL3;
#else
INTR_TYPE_S_EL1;
#endif
}
/*
* This functions is used to indicate to the interrupt controller that
* the processing of the interrupt corresponding to the `id` has
* finished.
*/
void plat_ic_end_of_interrupt(uint32_t id)
{
gicv2_end_of_interrupt(id);
}
/*
* An ARM processor signals interrupt exceptions through the IRQ and FIQ pins.
* The interrupt controller knows which pin/line it uses to signal a type of
* interrupt. It lets the interrupt management framework determine
* for a type of interrupt and security state, which line should be used in the
* SCR_EL3 to control its routing to EL3. The interrupt line is represented
* as the bit position of the IRQ or FIQ bit in the SCR_EL3.
*/
uint32_t plat_interrupt_type_to_line(uint32_t type,
uint32_t security_state)
{
assert(type == INTR_TYPE_S_EL1 ||
type == INTR_TYPE_EL3 ||
type == INTR_TYPE_NS);
/* Non-secure interrupts are signaled on the IRQ line always */
if (type == INTR_TYPE_NS)
return __builtin_ctz(SCR_IRQ_BIT);
/*
* Secure interrupts are signaled using the IRQ line if the FIQ is
* not enabled else they are signaled using the FIQ line.
*/
return ((gicv2_is_fiq_enabled()) ? __builtin_ctz(SCR_FIQ_BIT) :
__builtin_ctz(SCR_IRQ_BIT));
}
unsigned int plat_ic_get_running_priority(void)
{
return gicv2_get_running_priority();
}
int plat_ic_is_spi(unsigned int id)
{
return (id >= MIN_SPI_ID) && (id <= MAX_SPI_ID);
}
int plat_ic_is_ppi(unsigned int id)
{
return (id >= MIN_PPI_ID) && (id < MIN_SPI_ID);
}
int plat_ic_is_sgi(unsigned int id)
{
return (id >= MIN_SGI_ID) && (id < MIN_PPI_ID);
}
unsigned int plat_ic_get_interrupt_active(unsigned int id)
{
return gicv2_get_interrupt_active(id);
}
void plat_ic_enable_interrupt(unsigned int id)
{
gicv2_enable_interrupt(id);
}
void plat_ic_disable_interrupt(unsigned int id)
{
gicv2_disable_interrupt(id);
}
void plat_ic_set_interrupt_priority(unsigned int id, unsigned int priority)
{
gicv2_set_interrupt_priority(id, priority);
}
int plat_ic_has_interrupt_type(unsigned int type)
{
switch (type) {
#if GICV2_G0_FOR_EL3
case INTR_TYPE_EL3:
#else
case INTR_TYPE_S_EL1:
#endif
case INTR_TYPE_NS:
return 1;
default:
return 0;
}
}
void plat_ic_set_interrupt_type(unsigned int id, unsigned int type)
{
int gicv2_type = 0;
/* Map canonical interrupt type to GICv2 type */
switch (type) {
#if GICV2_G0_FOR_EL3
case INTR_TYPE_EL3:
#else
case INTR_TYPE_S_EL1:
#endif
gicv2_type = GICV2_INTR_GROUP0;
break;
case INTR_TYPE_NS:
gicv2_type = GICV2_INTR_GROUP1;
break;
default:
assert(0);
}
gicv2_set_interrupt_type(id, gicv2_type);
}