arm-trusted-firmware/services/std_svc/psci1.0/psci_common.c

512 lines
18 KiB
C

/*
* Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <context.h>
#include <context_mgmt.h>
#include <debug.h>
#include <platform.h>
#include <string.h>
#include "psci_private.h"
/*
* SPD power management operations, expected to be supplied by the registered
* SPD on successful SP initialization
*/
const spd_pm_ops_t *psci_spd_pm;
/*******************************************************************************
* Arrays that hold the platform's power domain tree information for state
* management of power domains.
* Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
* which is an ancestor of a CPU power domain.
* Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
******************************************************************************/
non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
#if USE_COHERENT_MEM
__attribute__ ((section("tzfw_coherent_mem")))
#endif
;
cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];
/*******************************************************************************
* Pointer to functions exported by the platform to complete power mgmt. ops
******************************************************************************/
const plat_pm_ops_t *psci_plat_pm_ops;
/*******************************************************************************
* Check that the maximum power level supported by the platform makes sense
* ****************************************************************************/
CASSERT(PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL && \
PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL, \
assert_platform_max_pwrlvl_check);
/*******************************************************************************
* This function is passed a cpu_index and the highest level in the topology
* tree. It iterates through the nodes to find the highest power level at which
* a domain is physically powered off.
******************************************************************************/
uint32_t psci_find_max_phys_off_pwrlvl(uint32_t end_pwrlvl,
unsigned int cpu_idx)
{
int max_pwrlvl, level;
unsigned int parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
if (psci_get_phys_state(cpu_idx, PSCI_CPU_PWR_LVL) != PSCI_STATE_OFF)
return PSCI_INVALID_DATA;
max_pwrlvl = PSCI_CPU_PWR_LVL;
for (level = PSCI_CPU_PWR_LVL + 1; level <= end_pwrlvl; level++) {
if (psci_get_phys_state(parent_idx, level) == PSCI_STATE_OFF)
max_pwrlvl = level;
parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
}
return max_pwrlvl;
}
/*******************************************************************************
* This function verifies that the all the other cores in the system have been
* turned OFF and the current CPU is the last running CPU in the system.
* Returns 1 (true) if the current CPU is the last ON CPU or 0 (false)
* otherwise.
******************************************************************************/
unsigned int psci_is_last_on_cpu(void)
{
unsigned long mpidr = read_mpidr_el1() & MPIDR_AFFINITY_MASK;
unsigned int i;
for (i = 0; i < PLATFORM_CORE_COUNT; i++) {
if (psci_cpu_pd_nodes[i].mpidr == mpidr) {
assert(psci_get_state(i, PSCI_CPU_PWR_LVL)
== PSCI_STATE_ON);
continue;
}
if (psci_get_state(i, PSCI_CPU_PWR_LVL) != PSCI_STATE_OFF)
return 0;
}
return 1;
}
/*******************************************************************************
* Routine to return the maximum power level to traverse to after a cpu has
* been physically powered up. It is expected to be called immediately after
* reset from assembler code.
******************************************************************************/
int get_power_on_target_pwrlvl(void)
{
int pwrlvl;
#if DEBUG
unsigned int state;
/*
* Sanity check the state of the cpu. It should be either suspend or "on
* pending"
*/
state = psci_get_state(plat_my_core_pos(), PSCI_CPU_PWR_LVL);
assert(state == PSCI_STATE_SUSPEND || state == PSCI_STATE_ON_PENDING);
#endif
/*
* Assume that this cpu was suspended and retrieve its target power
* level. If it is invalid then it could only have been turned off
* earlier. PLAT_MAX_PWR_LVL will be the highest power level a
* cpu can be turned off to.
*/
pwrlvl = psci_get_suspend_pwrlvl();
if (pwrlvl == PSCI_INVALID_DATA)
pwrlvl = PLAT_MAX_PWR_LVL;
return pwrlvl;
}
/*******************************************************************************
* PSCI helper function to get the parent nodes corresponding to a cpu_index.
******************************************************************************/
void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,
int end_lvl,
unsigned int node_index[])
{
unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node;
int i;
for (i = PSCI_CPU_PWR_LVL + 1; i <= end_lvl; i++) {
*node_index++ = parent_node;
parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
}
}
/*******************************************************************************
* This function is passed a cpu_index and the highest level in the topology
* tree and the state which each node should transition to. It updates the
* state of each node between the specified power levels.
******************************************************************************/
void psci_do_state_coordination(int end_pwrlvl,
unsigned int cpu_idx,
uint32_t state)
{
int level;
unsigned int parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
psci_set_state(cpu_idx, state, PSCI_CPU_PWR_LVL);
for (level = PSCI_CPU_PWR_LVL + 1; level <= end_pwrlvl; level++) {
psci_set_state(parent_idx, state, level);
parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
}
}
/*******************************************************************************
* This function is passed a cpu_index and the highest level in the topology
* tree that the operation should be applied to. It picks up locks in order of
* increasing power domain level in the range specified.
******************************************************************************/
void psci_acquire_pwr_domain_locks(int end_pwrlvl, unsigned int cpu_idx)
{
unsigned int parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
int level;
/* No locking required for level 0. Hence start locking from level 1 */
for (level = PSCI_CPU_PWR_LVL + 1; level <= end_pwrlvl; level++) {
psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
}
}
/*******************************************************************************
* This function is passed a cpu_index and the highest level in the topology
* tree that the operation should be applied to. It releases the locks in order
* of decreasing power domain level in the range specified.
******************************************************************************/
void psci_release_pwr_domain_locks(int end_pwrlvl, unsigned int cpu_idx)
{
unsigned int parent_idx, parent_nodes[PLAT_MAX_PWR_LVL] = {0};
int level;
/* Get the parent nodes */
psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
/* Unlock top down. No unlocking required for level 0. */
for (level = end_pwrlvl; level >= PSCI_CPU_PWR_LVL + 1; level--) {
parent_idx = parent_nodes[level - 1];
psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
}
}
/*******************************************************************************
* Simple routine to determine whether a mpidr is valid or not.
******************************************************************************/
int psci_validate_mpidr(unsigned long mpidr)
{
if (plat_core_pos_by_mpidr(mpidr) < 0)
return PSCI_E_INVALID_PARAMS;
return PSCI_E_SUCCESS;
}
/*******************************************************************************
* This function determines the full entrypoint information for the requested
* PSCI entrypoint on power on/resume and returns it.
******************************************************************************/
int psci_get_ns_ep_info(entry_point_info_t *ep,
uint64_t entrypoint, uint64_t context_id)
{
uint32_t ep_attr, mode, sctlr, daif, ee;
uint32_t ns_scr_el3 = read_scr_el3();
uint32_t ns_sctlr_el1 = read_sctlr_el1();
sctlr = ns_scr_el3 & SCR_HCE_BIT ? read_sctlr_el2() : ns_sctlr_el1;
ee = 0;
ep_attr = NON_SECURE | EP_ST_DISABLE;
if (sctlr & SCTLR_EE_BIT) {
ep_attr |= EP_EE_BIG;
ee = 1;
}
SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
ep->pc = entrypoint;
memset(&ep->args, 0, sizeof(ep->args));
ep->args.arg0 = context_id;
/*
* Figure out whether the cpu enters the non-secure address space
* in aarch32 or aarch64
*/
if (ns_scr_el3 & SCR_RW_BIT) {
/*
* Check whether a Thumb entry point has been provided for an
* aarch64 EL
*/
if (entrypoint & 0x1)
return PSCI_E_INVALID_PARAMS;
mode = ns_scr_el3 & SCR_HCE_BIT ? MODE_EL2 : MODE_EL1;
ep->spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
} else {
mode = ns_scr_el3 & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
/*
* TODO: Choose async. exception bits if HYP mode is not
* implemented according to the values of SCR.{AW, FW} bits
*/
daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, daif);
}
return PSCI_E_SUCCESS;
}
/*******************************************************************************
* This function takes an index and level of a power domain node in the topology
* tree and returns its state. State of a non-leaf node needs to be calculated.
******************************************************************************/
unsigned short psci_get_state(unsigned int idx,
int level)
{
/* A cpu node just contains the state which can be directly returned */
if (level == PSCI_CPU_PWR_LVL) {
flush_cpu_data_by_index(idx, psci_svc_cpu_data.psci_state);
return get_cpu_data_by_index(idx, psci_svc_cpu_data.psci_state);
}
#if !USE_COHERENT_MEM
flush_dcache_range((uint64_t) &psci_non_cpu_pd_nodes[idx],
sizeof(psci_non_cpu_pd_nodes[idx]));
#endif
/*
* For a power level higher than a cpu, the state has to be
* calculated. It depends upon the value of the reference count
* which is managed by each node at the next lower power level
* e.g. for a cluster, each cpu increments/decrements the reference
* count. If the reference count is 0 then the power level is
* OFF else ON.
*/
if (psci_non_cpu_pd_nodes[idx].ref_count)
return PSCI_STATE_ON;
else
return PSCI_STATE_OFF;
}
/*******************************************************************************
* This function takes an index and level of a power domain node in the topology
* tree and a target state. State of a non-leaf node needs to be converted to
* a reference count. State of a leaf node can be set directly.
******************************************************************************/
void psci_set_state(unsigned int idx,
unsigned short state,
int level)
{
/*
* For a power level higher than a cpu, the state is used
* to decide whether the reference count is incremented or
* decremented. Entry into the ON_PENDING state does not have
* effect.
*/
if (level > PSCI_CPU_PWR_LVL) {
switch (state) {
case PSCI_STATE_ON:
psci_non_cpu_pd_nodes[idx].ref_count++;
break;
case PSCI_STATE_OFF:
case PSCI_STATE_SUSPEND:
psci_non_cpu_pd_nodes[idx].ref_count--;
break;
case PSCI_STATE_ON_PENDING:
/*
* A power level higher than a cpu will not undergo
* a state change when it is about to be turned on
*/
return;
default:
assert(0);
#if !USE_COHERENT_MEM
flush_dcache_range((uint64_t) &psci_non_cpu_pd_nodes[idx],
sizeof(psci_non_cpu_pd_nodes[idx]));
#endif
}
} else {
set_cpu_data_by_index(idx, psci_svc_cpu_data.psci_state, state);
flush_cpu_data_by_index(idx, psci_svc_cpu_data.psci_state);
}
}
/*******************************************************************************
* A power domain could be on, on_pending, suspended or off. These are the
* logical states it can be in. Physically either it is off or on. When it is in
* the state on_pending then it is about to be turned on. It is not possible to
* tell whether that's actually happened or not. So we err on the side of
* caution & treat the power domain as being turned off.
******************************************************************************/
unsigned short psci_get_phys_state(unsigned int idx,
int level)
{
unsigned int state;
state = psci_get_state(idx, level);
return get_phys_state(state);
}
/*******************************************************************************
* Generic handler which is called when a cpu is physically powered on. It
* traverses the node information and finds the highest power level powered
* off and performs generic, architectural, platform setup and state management
* to power on that power level and power levels below it.
* e.g. For a cpu that's been powered on, it will call the platform specific
* code to enable the gic cpu interface and for a cluster it will enable
* coherency at the interconnect level in addition to gic cpu interface.
******************************************************************************/
void psci_power_up_finish(int end_pwrlvl,
pwrlvl_power_on_finisher_t pon_handler)
{
unsigned int cpu_idx = plat_my_core_pos();
unsigned int max_phys_off_pwrlvl;
/*
* This function acquires the lock corresponding to each power
* level so that by the time all locks are taken, the system topology
* is snapshot and state management can be done safely.
*/
psci_acquire_pwr_domain_locks(end_pwrlvl,
cpu_idx);
max_phys_off_pwrlvl = psci_find_max_phys_off_pwrlvl(end_pwrlvl,
cpu_idx);
assert(max_phys_off_pwrlvl != PSCI_INVALID_DATA);
/* Perform generic, architecture and platform specific handling */
pon_handler(cpu_idx, max_phys_off_pwrlvl);
/*
* This function updates the state of each power instance
* corresponding to the cpu index in the range of power levels
* specified.
*/
psci_do_state_coordination(end_pwrlvl,
cpu_idx,
PSCI_STATE_ON);
/*
* This loop releases the lock corresponding to each power level
* in the reverse order to which they were acquired.
*/
psci_release_pwr_domain_locks(end_pwrlvl,
cpu_idx);
}
/*******************************************************************************
* This function initializes the set of hooks that PSCI invokes as part of power
* management operation. The power management hooks are expected to be provided
* by the SPD, after it finishes all its initialization
******************************************************************************/
void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
{
assert(pm);
psci_spd_pm = pm;
if (pm->svc_migrate)
psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);
if (pm->svc_migrate_info)
psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
| define_psci_cap(PSCI_MIG_INFO_TYPE);
}
/*******************************************************************************
* This function invokes the migrate info hook in the spd_pm_ops. It performs
* the necessary return value validation. If the Secure Payload is UP and
* migrate capable, it returns the mpidr of the CPU on which the Secure payload
* is resident through the mpidr parameter. Else the value of the parameter on
* return is undefined.
******************************************************************************/
int psci_spd_migrate_info(uint64_t *mpidr)
{
int rc;
if (!psci_spd_pm || !psci_spd_pm->svc_migrate_info)
return PSCI_E_NOT_SUPPORTED;
rc = psci_spd_pm->svc_migrate_info(mpidr);
assert(rc == PSCI_TOS_UP_MIG_CAP || rc == PSCI_TOS_NOT_UP_MIG_CAP \
|| rc == PSCI_TOS_NOT_PRESENT_MP || rc == PSCI_E_NOT_SUPPORTED);
return rc;
}
/*******************************************************************************
* This function prints the state of all power domains present in the
* system
******************************************************************************/
void psci_print_power_domain_map(void)
{
#if LOG_LEVEL >= LOG_LEVEL_INFO
unsigned int idx, state;
/* This array maps to the PSCI_STATE_X definitions in psci.h */
static const char *psci_state_str[] = {
"ON",
"OFF",
"ON_PENDING",
"SUSPEND"
};
INFO("PSCI Power Domain Map:\n");
for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - PLATFORM_CORE_COUNT); idx++) {
state = psci_get_state(idx, psci_non_cpu_pd_nodes[idx].level);
INFO(" Domain Node : Level %u, parent_node %d, State %s\n",
psci_non_cpu_pd_nodes[idx].level,
psci_non_cpu_pd_nodes[idx].parent_node,
psci_state_str[state]);
}
for (idx = 0; idx < PLATFORM_CORE_COUNT; idx++) {
state = psci_get_state(idx, PSCI_CPU_PWR_LVL);
INFO(" CPU Node : MPID 0x%lx, parent_node %d, State %s\n",
psci_cpu_pd_nodes[idx].mpidr,
psci_cpu_pd_nodes[idx].parent_node,
psci_state_str[state]);
}
#endif
}