arm-trusted-firmware/common/psci/psci_afflvl_on.c

417 lines
13 KiB
C

/*
* Copyright (c) 2013, ARM Limited. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <arch_helpers.h>
#include <console.h>
#include <platform.h>
#include <psci.h>
#include <psci_private.h>
typedef int (*afflvl_on_handler)(unsigned long,
aff_map_node *,
unsigned long,
unsigned long);
/*******************************************************************************
* This function checks whether a cpu which has been requested to be turned on
* is OFF to begin with.
******************************************************************************/
static int cpu_on_validate_state(unsigned int state)
{
unsigned int psci_state;
/* Get the raw psci state */
psci_state = psci_get_state(state);
if (psci_state == PSCI_STATE_ON || psci_state == PSCI_STATE_SUSPEND)
return PSCI_E_ALREADY_ON;
if (psci_state == PSCI_STATE_ON_PENDING)
return PSCI_E_ON_PENDING;
assert(psci_state == PSCI_STATE_OFF);
return PSCI_E_SUCCESS;
}
/*******************************************************************************
* Handler routine to turn a cpu on. It takes care of any generic, architectural
* or platform specific setup required.
* TODO: Split this code across separate handlers for each type of setup?
******************************************************************************/
static int psci_afflvl0_on(unsigned long target_cpu,
aff_map_node *cpu_node,
unsigned long ns_entrypoint,
unsigned long context_id)
{
unsigned int index, plat_state;
unsigned long psci_entrypoint;
int rc;
/* Sanity check to safeguard against data corruption */
assert(cpu_node->level == MPIDR_AFFLVL0);
/*
* Generic management: Ensure that the cpu is off to be
* turned on
*/
rc = cpu_on_validate_state(cpu_node->state);
if (rc != PSCI_E_SUCCESS)
return rc;
/*
* Arch. management: Derive the re-entry information for
* the non-secure world from the non-secure state from
* where this call originated.
*/
index = cpu_node->data;
rc = psci_set_ns_entry_info(index, ns_entrypoint, context_id);
if (rc != PSCI_E_SUCCESS)
return rc;
/* Set the secure world (EL3) re-entry point after BL1 */
psci_entrypoint = (unsigned long) psci_aff_on_finish_entry;
/*
* Plat. management: Give the platform the current state
* of the target cpu to allow it to perform the necessary
* steps to power on.
*/
if (psci_plat_pm_ops->affinst_on) {
/* Get the current physical state of this cpu */
plat_state = psci_get_aff_phys_state(cpu_node);
rc = psci_plat_pm_ops->affinst_on(target_cpu,
psci_entrypoint,
ns_entrypoint,
cpu_node->level,
plat_state);
}
return rc;
}
/*******************************************************************************
* Handler routine to turn a cluster on. It takes care or any generic, arch.
* or platform specific setup required.
* TODO: Split this code across separate handlers for each type of setup?
******************************************************************************/
static int psci_afflvl1_on(unsigned long target_cpu,
aff_map_node *cluster_node,
unsigned long ns_entrypoint,
unsigned long context_id)
{
int rc = PSCI_E_SUCCESS;
unsigned int plat_state;
unsigned long psci_entrypoint;
assert(cluster_node->level == MPIDR_AFFLVL1);
/*
* There is no generic and arch. specific cluster
* management required
*/
/*
* Plat. management: Give the platform the current state
* of the target cpu to allow it to perform the necessary
* steps to power on.
*/
if (psci_plat_pm_ops->affinst_on) {
plat_state = psci_get_aff_phys_state(cluster_node);
psci_entrypoint = (unsigned long) psci_aff_on_finish_entry;
rc = psci_plat_pm_ops->affinst_on(target_cpu,
psci_entrypoint,
ns_entrypoint,
cluster_node->level,
plat_state);
}
return rc;
}
/*******************************************************************************
* Handler routine to turn a cluster of clusters on. It takes care or any
* generic, arch. or platform specific setup required.
* TODO: Split this code across separate handlers for each type of setup?
******************************************************************************/
static int psci_afflvl2_on(unsigned long target_cpu,
aff_map_node *system_node,
unsigned long ns_entrypoint,
unsigned long context_id)
{
int rc = PSCI_E_SUCCESS;
unsigned int plat_state;
unsigned long psci_entrypoint;
/* Cannot go beyond affinity level 2 in this psci imp. */
assert(system_node->level == MPIDR_AFFLVL2);
/*
* There is no generic and arch. specific system management
* required
*/
/*
* Plat. management: Give the platform the current state
* of the target cpu to allow it to perform the necessary
* steps to power on.
*/
if (psci_plat_pm_ops->affinst_on) {
plat_state = psci_get_aff_phys_state(system_node);
psci_entrypoint = (unsigned long) psci_aff_on_finish_entry;
rc = psci_plat_pm_ops->affinst_on(target_cpu,
psci_entrypoint,
ns_entrypoint,
system_node->level,
plat_state);
}
return rc;
}
/* Private data structure to make this handlers accessible through indexing */
static const afflvl_on_handler psci_afflvl_on_handlers[] = {
psci_afflvl0_on,
psci_afflvl1_on,
psci_afflvl2_on,
};
/*******************************************************************************
* This function implements the core of the processing required to turn a cpu
* on. It avoids recursion to traverse from the lowest to the highest affinity
* level unlike the off/suspend/pon_finisher functions. It does ensure that the
* locks are picked in the same order as the order routines to avoid deadlocks.
* The flow is: Take all the locks until the highest affinity level, Call the
* handlers for turning an affinity level on & finally change the state of the
* affinity level.
******************************************************************************/
int psci_afflvl_on(unsigned long target_cpu,
unsigned long entrypoint,
unsigned long context_id,
int current_afflvl,
int target_afflvl)
{
unsigned int prev_state, next_state;
int rc = PSCI_E_SUCCESS, level;
aff_map_node *aff_node;
unsigned long mpidr = read_mpidr() & MPIDR_AFFINITY_MASK;
/*
* This loop acquires the lock corresponding to each
* affinity level so that by the time we hit the lowest
* affinity level, the system topology is snapshot and
* state management can be done safely.
*/
for (level = current_afflvl; level >= target_afflvl; level--) {
aff_node = psci_get_aff_map_node(target_cpu, level);
if (aff_node)
bakery_lock_get(mpidr, &aff_node->lock);
}
/*
* Perform generic, architecture and platform specific
* handling
*/
for (level = current_afflvl; level >= target_afflvl; level--) {
/* Grab the node for each affinity level once again */
aff_node = psci_get_aff_map_node(target_cpu, level);
if (aff_node) {
/* Keep the old state and the next one handy */
prev_state = psci_get_state(aff_node->state);
rc = psci_afflvl_on_handlers[level](target_cpu,
aff_node,
entrypoint,
context_id);
if (rc != PSCI_E_SUCCESS) {
psci_set_state(aff_node->state, prev_state);
goto exit;
}
}
}
/*
* State management: Update the states since this is the
* target affinity level requested.
*/
psci_change_state(target_cpu,
target_afflvl,
get_max_afflvl(),
PSCI_STATE_ON_PENDING);
exit:
/*
* This loop releases the lock corresponding to each affinity level
* in the reverse order. It also checks the final state of the cpu.
*/
for (level = target_afflvl; level <= current_afflvl; level++) {
aff_node = psci_get_aff_map_node(target_cpu, level);
if (aff_node) {
if (level == MPIDR_AFFLVL0) {
next_state = psci_get_state(aff_node->state);
assert(next_state == PSCI_STATE_ON_PENDING);
}
bakery_lock_release(mpidr, &aff_node->lock);
}
}
return rc;
}
/*******************************************************************************
* The following functions finish an earlier affinity power on request. They
* are called by the common finisher routine in psci_common.c.
******************************************************************************/
static unsigned int psci_afflvl0_on_finish(unsigned long mpidr,
aff_map_node *cpu_node,
unsigned int prev_state)
{
unsigned int index, plat_state, rc = PSCI_E_SUCCESS;
assert(cpu_node->level == MPIDR_AFFLVL0);
/*
* Plat. management: Perform the platform specific actions
* for this cpu e.g. enabling the gic or zeroing the mailbox
* register. The actual state of this cpu has already been
* changed.
*/
if (psci_plat_pm_ops->affinst_on_finish) {
/* Get the previous physical state of this cpu */
plat_state = psci_get_phys_state(prev_state);
rc = psci_plat_pm_ops->affinst_on_finish(mpidr,
cpu_node->level,
plat_state);
assert(rc == PSCI_E_SUCCESS);
}
/*
* Arch. management: Turn on mmu & restore architectural state
*/
write_vbar((unsigned long) runtime_exceptions);
enable_mmu();
/*
* All the platform specific actions for turning this cpu
* on have completed. Perform enough arch.initialization
* to run in the non-secure address space.
*/
bl31_arch_setup();
/*
* Generic management: Now we just need to retrieve the
* information that we had stashed away during the cpu_on
* call to set this cpu on it's way. First get the index
* for restoring the re-entry info
*/
index = cpu_node->data;
rc = psci_get_ns_entry_info(index);
/* Clean caches before re-entering normal world */
dcsw_op_louis(DCCSW);
return rc;
}
static unsigned int psci_afflvl1_on_finish(unsigned long mpidr,
aff_map_node *cluster_node,
unsigned int prev_state)
{
unsigned int rc = PSCI_E_SUCCESS;
unsigned int plat_state;
assert(cluster_node->level == MPIDR_AFFLVL1);
/*
* Plat. management: Perform the platform specific actions
* as per the old state of the cluster e.g. enabling
* coherency at the interconnect depends upon the state with
* which this cluster was powered up. If anything goes wrong
* then assert as there is no way to recover from this
* situation.
*/
if (psci_plat_pm_ops->affinst_on_finish) {
plat_state = psci_get_phys_state(prev_state);
rc = psci_plat_pm_ops->affinst_on_finish(mpidr,
cluster_node->level,
plat_state);
assert(rc == PSCI_E_SUCCESS);
}
return rc;
}
static unsigned int psci_afflvl2_on_finish(unsigned long mpidr,
aff_map_node *system_node,
unsigned int prev_state)
{
int rc = PSCI_E_SUCCESS;
unsigned int plat_state;
/* Cannot go beyond this affinity level */
assert(system_node->level == MPIDR_AFFLVL2);
/*
* Currently, there are no architectural actions to perform
* at the system level.
*/
/*
* Plat. management: Perform the platform specific actions
* as per the old state of the cluster e.g. enabling
* coherency at the interconnect depends upon the state with
* which this cluster was powered up. If anything goes wrong
* then assert as there is no way to recover from this
* situation.
*/
if (psci_plat_pm_ops->affinst_on_finish) {
plat_state = psci_get_phys_state(system_node->state);
rc = psci_plat_pm_ops->affinst_on_finish(mpidr,
system_node->level,
plat_state);
assert(rc == PSCI_E_SUCCESS);
}
return rc;
}
const afflvl_power_on_finisher psci_afflvl_on_finishers[] = {
psci_afflvl0_on_finish,
psci_afflvl1_on_finish,
psci_afflvl2_on_finish,
};