arm-trusted-firmware/plat/nvidia/tegra/soc/t210/drivers/se/security_engine.c

504 lines
14 KiB
C

/*
* Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
* Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch_helpers.h>
#include <assert.h>
#include <common/debug.h>
#include <delay_timer.h>
#include <errno.h>
#include <mmio.h>
#include <psci.h>
#include <se_private.h>
#include <security_engine.h>
#include <tegra_platform.h>
/*******************************************************************************
* Constants and Macros
******************************************************************************/
#define TIMEOUT_100MS 100UL // Timeout in 100ms
/*******************************************************************************
* Data structure and global variables
******************************************************************************/
/* The security engine contexts are formatted as follows:
*
* SE1 CONTEXT:
* #--------------------------------#
* | Random Data 1 Block |
* #--------------------------------#
* | Sticky Bits 2 Blocks |
* #--------------------------------#
* | Key Table 64 Blocks |
* | For each Key (x16): |
* | Key: 2 Blocks |
* | Original-IV: 1 Block |
* | Updated-IV: 1 Block |
* #--------------------------------#
* | RSA Keys 64 Blocks |
* #--------------------------------#
* | Known Pattern 1 Block |
* #--------------------------------#
*
* SE2/PKA1 CONTEXT:
* #--------------------------------#
* | Random Data 1 Block |
* #--------------------------------#
* | Sticky Bits 2 Blocks |
* #--------------------------------#
* | Key Table 64 Blocks |
* | For each Key (x16): |
* | Key: 2 Blocks |
* | Original-IV: 1 Block |
* | Updated-IV: 1 Block |
* #--------------------------------#
* | RSA Keys 64 Blocks |
* #--------------------------------#
* | PKA sticky bits 1 Block |
* #--------------------------------#
* | PKA keys 512 Blocks |
* #--------------------------------#
* | Known Pattern 1 Block |
* #--------------------------------#
*/
/* SE input and output linked list buffers */
static tegra_se_io_lst_t se1_src_ll_buf;
static tegra_se_io_lst_t se1_dst_ll_buf;
/* SE2 input and output linked list buffers */
static tegra_se_io_lst_t se2_src_ll_buf;
static tegra_se_io_lst_t se2_dst_ll_buf;
/* SE1 security engine device handle */
static tegra_se_dev_t se_dev_1 = {
.se_num = 1,
/* setup base address for se */
.se_base = TEGRA_SE1_BASE,
/* Setup context size in AES blocks */
.ctx_size_blks = SE_CTX_SAVE_SIZE_BLOCKS_SE1,
/* Setup SRC buffers for SE operations */
.src_ll_buf = &se1_src_ll_buf,
/* Setup DST buffers for SE operations */
.dst_ll_buf = &se1_dst_ll_buf,
};
/* SE2 security engine device handle */
static tegra_se_dev_t se_dev_2 = {
.se_num = 2,
/* setup base address for se */
.se_base = TEGRA_SE2_BASE,
/* Setup context size in AES blocks */
.ctx_size_blks = SE_CTX_SAVE_SIZE_BLOCKS_SE2,
/* Setup SRC buffers for SE operations */
.src_ll_buf = &se2_src_ll_buf,
/* Setup DST buffers for SE operations */
.dst_ll_buf = &se2_dst_ll_buf,
};
/*******************************************************************************
* Functions Definition
******************************************************************************/
static void tegra_se_make_data_coherent(const tegra_se_dev_t *se_dev)
{
flush_dcache_range(((uint64_t)(se_dev->src_ll_buf)),
sizeof(tegra_se_io_lst_t));
flush_dcache_range(((uint64_t)(se_dev->dst_ll_buf)),
sizeof(tegra_se_io_lst_t));
}
/*
* Check that SE operation has completed after kickoff
* This function is invoked after an SE operation has been started,
* and it checks the following conditions:
* 1. SE_INT_STATUS = SE_OP_DONE
* 2. SE_STATUS = IDLE
* 3. AHB bus data transfer complete.
* 4. SE_ERR_STATUS is clean.
*/
static int32_t tegra_se_operation_complete(const tegra_se_dev_t *se_dev)
{
uint32_t val = 0;
int32_t ret = 0;
uint32_t timeout;
/* Poll the SE interrupt register to ensure H/W operation complete */
val = tegra_se_read_32(se_dev, SE_INT_STATUS_REG_OFFSET);
for (timeout = 0; (SE_INT_OP_DONE(val) == SE_INT_OP_DONE_CLEAR) &&
(timeout < TIMEOUT_100MS); timeout++) {
mdelay(1);
val = tegra_se_read_32(se_dev, SE_INT_STATUS_REG_OFFSET);
}
if (timeout == TIMEOUT_100MS) {
ERROR("%s: ERR: Atomic context save operation timeout!\n",
__func__);
ret = -ETIMEDOUT;
}
/* Poll the SE status idle to ensure H/W operation complete */
if (ret == 0) {
val = tegra_se_read_32(se_dev, SE_STATUS_OFFSET);
for (timeout = 0; (val != 0U) && (timeout < TIMEOUT_100MS);
timeout++) {
mdelay(1);
val = tegra_se_read_32(se_dev, SE_STATUS_OFFSET);
}
if (timeout == TIMEOUT_100MS) {
ERROR("%s: ERR: MEM_INTERFACE and SE state "
"idle state timeout.\n", __func__);
ret = -ETIMEDOUT;
}
}
/* Check AHB bus transfer complete */
if (ret == 0) {
val = mmio_read_32(TEGRA_AHB_ARB_BASE + ARAHB_MEM_WRQUE_MST_ID_OFFSET);
for (timeout = 0; ((val & (ARAHB_MST_ID_SE_MASK | ARAHB_MST_ID_SE2_MASK)) != 0U) &&
(timeout < TIMEOUT_100MS); timeout++) {
mdelay(1);
val = mmio_read_32(TEGRA_AHB_ARB_BASE + ARAHB_MEM_WRQUE_MST_ID_OFFSET);
}
if (timeout == TIMEOUT_100MS) {
ERROR("%s: SE write over AHB timeout.\n", __func__);
ret = -ETIMEDOUT;
}
}
/* Ensure that no errors are thrown during operation */
if (ret == 0) {
val = tegra_se_read_32(se_dev, SE_ERR_STATUS_REG_OFFSET);
if (val != 0U) {
ERROR("%s: error during SE operation! 0x%x", __func__, val);
ret = -ENOTSUP;
}
}
return ret;
}
/*
* Verify the SE context save auto has been enabled.
* SE_CTX_SAVE_AUTO.ENABLE == ENABLE
* If the SE context save auto is not enabled, then set
* the context save auto enable and lock the setting.
* If the SE context save auto is not enabled and the
* enable setting is locked, then return an error.
*/
static inline int32_t tegra_se_ctx_save_auto_enable(const tegra_se_dev_t *se_dev)
{
uint32_t val;
int32_t ret = 0;
val = tegra_se_read_32(se_dev, SE_CTX_SAVE_AUTO_REG_OFFSET);
if (SE_CTX_SAVE_AUTO_ENABLE(val) == SE_CTX_SAVE_AUTO_DIS) {
if (SE_CTX_SAVE_AUTO_LOCK(val) == SE_CTX_SAVE_AUTO_LOCK_EN) {
ERROR("%s: ERR: Cannot enable atomic. Write locked!\n",
__func__);
ret = -EACCES;
}
/* Program SE_CTX_SAVE_AUTO */
if (ret == 0) {
tegra_se_write_32(se_dev, SE_CTX_SAVE_AUTO_REG_OFFSET,
SE_CTX_SAVE_AUTO_LOCK_EN |
SE_CTX_SAVE_AUTO_EN);
}
}
return ret;
}
/*
* Wait for SE engine to be idle and clear pending interrupts before
* starting the next SE operation.
*/
static int32_t tegra_se_operation_prepare(const tegra_se_dev_t *se_dev)
{
int32_t ret = 0;
uint32_t val = 0;
uint32_t timeout;
/* Wait for previous operation to finish */
val = tegra_se_read_32(se_dev, SE_STATUS_OFFSET);
for (timeout = 0; (val != 0U) && (timeout < TIMEOUT_100MS); timeout++) {
mdelay(1);
val = tegra_se_read_32(se_dev, SE_STATUS_OFFSET);
}
if (timeout == TIMEOUT_100MS) {
ERROR("%s: ERR: SE status is not idle!\n", __func__);
ret = -ETIMEDOUT;
}
/* Clear any pending interrupts from previous operation */
val = tegra_se_read_32(se_dev, SE_INT_STATUS_REG_OFFSET);
tegra_se_write_32(se_dev, SE_INT_STATUS_REG_OFFSET, val);
return ret;
}
/*
* SE atomic context save. At SC7 entry, SE driver triggers the
* hardware automatically performs the context save operation.
*/
static int32_t tegra_se_context_save_atomic(const tegra_se_dev_t *se_dev)
{
int32_t ret = 0;
uint32_t val = 0;
uint32_t blk_count_limit = 0;
uint32_t block_count;
/* Check that previous operation is finalized */
ret = tegra_se_operation_prepare(se_dev);
/* Ensure HW atomic context save has been enabled
* This should have been done at boot time.
* SE_CTX_SAVE_AUTO.ENABLE == ENABLE
*/
if (ret == 0) {
ret = tegra_se_ctx_save_auto_enable(se_dev);
}
/* Read the context save progress counter: block_count
* Ensure no previous context save has been triggered
* SE_CTX_SAVE_AUTO.CURR_CNT == 0
*/
if (ret == 0) {
val = tegra_se_read_32(se_dev, SE_CTX_SAVE_AUTO_REG_OFFSET);
block_count = SE_CTX_SAVE_GET_BLK_COUNT(val);
if (block_count != 0U) {
ERROR("%s: ctx_save triggered multiple times\n",
__func__);
ret = -EALREADY;
}
}
/* Set the destination block count when the context save complete */
if (ret == 0) {
blk_count_limit = block_count + se_dev->ctx_size_blks;
}
/* Program SE_CONFIG register as for RNG operation
* SE_CONFIG.ENC_ALG = RNG
* SE_CONFIG.DEC_ALG = NOP
* SE_CONFIG.ENC_MODE is ignored
* SE_CONFIG.DEC_MODE is ignored
* SE_CONFIG.DST = MEMORY
*/
if (ret == 0) {
val = (SE_CONFIG_ENC_ALG_RNG |
SE_CONFIG_DEC_ALG_NOP |
SE_CONFIG_DST_MEMORY);
tegra_se_write_32(se_dev, SE_CONFIG_REG_OFFSET, val);
tegra_se_make_data_coherent(se_dev);
/* SE_CTX_SAVE operation */
tegra_se_write_32(se_dev, SE_OPERATION_REG_OFFSET,
SE_OP_CTX_SAVE);
ret = tegra_se_operation_complete(se_dev);
}
/* Check that context has written the correct number of blocks */
if (ret == 0) {
val = tegra_se_read_32(se_dev, SE_CTX_SAVE_AUTO_REG_OFFSET);
if (SE_CTX_SAVE_GET_BLK_COUNT(val) != blk_count_limit) {
ERROR("%s: expected %d blocks but %d were written\n",
__func__, blk_count_limit, val);
ret = -ECANCELED;
}
}
return ret;
}
/*
* Security engine primitive operations, including normal operation
* and the context save operation.
*/
static int tegra_se_perform_operation(const tegra_se_dev_t *se_dev, uint32_t nbytes)
{
uint32_t nblocks = nbytes / TEGRA_SE_AES_BLOCK_SIZE;
int ret = 0;
assert(se_dev);
/* Use device buffers for in and out */
tegra_se_write_32(se_dev, SE_OUT_LL_ADDR_REG_OFFSET, ((uint64_t)(se_dev->dst_ll_buf)));
tegra_se_write_32(se_dev, SE_IN_LL_ADDR_REG_OFFSET, ((uint64_t)(se_dev->src_ll_buf)));
/* Check that previous operation is finalized */
ret = tegra_se_operation_prepare(se_dev);
if (ret != 0) {
goto op_error;
}
/* Program SE operation size */
if (nblocks) {
tegra_se_write_32(se_dev, SE_BLOCK_COUNT_REG_OFFSET, nblocks - 1);
}
/* Make SE LL data coherent before the SE operation */
tegra_se_make_data_coherent(se_dev);
/* Start hardware operation */
tegra_se_write_32(se_dev, SE_OPERATION_REG_OFFSET, SE_OP_START);
/* Wait for operation to finish */
ret = tegra_se_operation_complete(se_dev);
op_error:
return ret;
}
/*
* Security Engine sequence to generat SRK
* SE and SE2 will generate different SRK by different
* entropy seeds.
*/
static int tegra_se_generate_srk(const tegra_se_dev_t *se_dev)
{
int ret = PSCI_E_INTERN_FAIL;
uint32_t val;
/* Confgure the following hardware register settings:
* SE_CONFIG.DEC_ALG = NOP
* SE_CONFIG.ENC_ALG = RNG
* SE_CONFIG.DST = SRK
* SE_OPERATION.OP = START
* SE_CRYPTO_LAST_BLOCK = 0
*/
se_dev->src_ll_buf->last_buff_num = 0;
se_dev->dst_ll_buf->last_buff_num = 0;
/* Configure random number generator */
val = (DRBG_MODE_FORCE_RESEED | DRBG_SRC_ENTROPY);
tegra_se_write_32(se_dev, SE_RNG_CONFIG_REG_OFFSET, val);
/* Configure output destination = SRK */
val = (SE_CONFIG_ENC_ALG_RNG |
SE_CONFIG_DEC_ALG_NOP |
SE_CONFIG_DST_SRK);
tegra_se_write_32(se_dev, SE_CONFIG_REG_OFFSET, val);
/* Perform hardware operation */
ret = tegra_se_perform_operation(se_dev, 0);
return ret;
}
/*
* Initialize the SE engine handle
*/
void tegra_se_init(void)
{
INFO("%s: start SE init\n", __func__);
/* Generate random SRK to initialize DRBG */
tegra_se_generate_srk(&se_dev_1);
tegra_se_generate_srk(&se_dev_2);
INFO("%s: SE init done\n", __func__);
}
/*
* Security engine power suspend entry point.
* This function is invoked from PSCI power domain suspend handler.
*/
int32_t tegra_se_suspend(void)
{
int32_t ret = 0;
/* Atomic context save se2 and pka1 */
INFO("%s: SE2/PKA1 atomic context save\n", __func__);
ret = tegra_se_context_save_atomic(&se_dev_2);
/* Atomic context save se */
if (ret == 0) {
INFO("%s: SE1 atomic context save\n", __func__);
ret = tegra_se_context_save_atomic(&se_dev_1);
}
if (ret == 0) {
INFO("%s: SE atomic context save done\n", __func__);
}
return ret;
}
/*
* Save TZRAM to shadow TZRAM in AON
*/
int32_t tegra_se_save_tzram(void)
{
uint32_t val = 0;
int32_t ret = 0;
uint32_t timeout;
INFO("%s: SE TZRAM save start\n", __func__);
val = (SE_TZRAM_OP_REQ_INIT | SE_TZRAM_OP_MODE_SAVE);
tegra_se_write_32(&se_dev_1, SE_TZRAM_OPERATION, val);
val = tegra_se_read_32(&se_dev_1, SE_TZRAM_OPERATION);
for (timeout = 0; (SE_TZRAM_OP_BUSY(val) == SE_TZRAM_OP_BUSY_ON) &&
(timeout < TIMEOUT_100MS); timeout++) {
mdelay(1);
val = tegra_se_read_32(&se_dev_1, SE_TZRAM_OPERATION);
}
if (timeout == TIMEOUT_100MS) {
ERROR("%s: ERR: TZRAM save timeout!\n", __func__);
ret = -ETIMEDOUT;
}
if (ret == 0) {
INFO("%s: SE TZRAM save done!\n", __func__);
}
return ret;
}
/*
* The function is invoked by SE resume
*/
static void tegra_se_warm_boot_resume(const tegra_se_dev_t *se_dev)
{
uint32_t val;
assert(se_dev);
/* Lock RNG source to ENTROPY on resume */
val = DRBG_RO_ENT_IGNORE_MEM_ENABLE |
DRBG_RO_ENT_SRC_LOCK_ENABLE |
DRBG_RO_ENT_SRC_ENABLE;
tegra_se_write_32(se_dev, SE_RNG_SRC_CONFIG_REG_OFFSET, val);
/* Enable and lock the SE atomic context save setting */
if (tegra_se_ctx_save_auto_enable(se_dev) != 0) {
ERROR("%s: ERR: enable SE%d context save auto failed!\n",
__func__, se_dev->se_num);
}
/* Set a random value to SRK to initialize DRBG */
tegra_se_generate_srk(se_dev);
}
/*
* The function is invoked on SC7 resume
*/
void tegra_se_resume(void)
{
tegra_se_warm_boot_resume(&se_dev_1);
tegra_se_warm_boot_resume(&se_dev_2);
}