arm-trusted-firmware/plat/arm/board/arm_fpga/fpga_bl31_setup.c

135 lines
3.5 KiB
C

/*
* Copyright (c) 2020, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <common/fdt_wrappers.h>
#include <drivers/delay_timer.h>
#include <drivers/generic_delay_timer.h>
#include <libfdt.h>
#include "fpga_private.h"
#include <plat/common/platform.h>
#include <platform_def.h>
static entry_point_info_t bl33_image_ep_info;
volatile uint32_t secondary_core_spinlock;
uintptr_t plat_get_ns_image_entrypoint(void)
{
#ifdef PRELOADED_BL33_BASE
return PRELOADED_BL33_BASE;
#else
return 0ULL;
#endif
}
uint32_t fpga_get_spsr_for_bl33_entry(void)
{
return SPSR_64(MODE_EL2, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
}
void bl31_early_platform_setup2(u_register_t arg0, u_register_t arg1,
u_register_t arg2, u_register_t arg3)
{
/* Add this core to the VALID mpids list */
fpga_valid_mpids[plat_my_core_pos()] = VALID_MPID;
/*
* Notify the secondary CPUs that the C runtime is ready
* so they can announce themselves.
*/
secondary_core_spinlock = C_RUNTIME_READY_KEY;
dsbish();
sev();
fpga_console_init();
bl33_image_ep_info.pc = plat_get_ns_image_entrypoint();
bl33_image_ep_info.spsr = fpga_get_spsr_for_bl33_entry();
SET_SECURITY_STATE(bl33_image_ep_info.h.attr, NON_SECURE);
/* Set x0-x3 for the primary CPU as expected by the kernel */
bl33_image_ep_info.args.arg0 = (u_register_t)FPGA_PRELOADED_DTB_BASE;
bl33_image_ep_info.args.arg1 = 0U;
bl33_image_ep_info.args.arg2 = 0U;
bl33_image_ep_info.args.arg3 = 0U;
}
void bl31_plat_arch_setup(void)
{
}
void bl31_platform_setup(void)
{
/* Write frequency to CNTCRL and initialize timer */
generic_delay_timer_init();
/*
* Before doing anything else, wait for some time to ensure that
* the secondary CPUs have populated the fpga_valid_mpids array.
* As the number of secondary cores is unknown and can even be 0,
* it is not possible to rely on any signal from them, so use a
* delay instead.
*/
mdelay(5);
/*
* On the event of a cold reset issued by, for instance, a reset pin
* assertion, we cannot guarantee memory to be initialized to zero.
* In such scenario, if the secondary cores reached
* plat_secondary_cold_boot_setup before the primary one initialized
* .BSS, we could end up having a race condition if the spinlock
* was not cleared before.
*
* Similarly, if there were a reset before the spinlock had been
* cleared, the secondary cores would find the lock opened before
* .BSS is cleared, causing another race condition.
*
* So clean the spinlock as soon as we think it is safe to reduce the
* chances of any race condition on a reset.
*/
secondary_core_spinlock = 0UL;
/* Initialize the GIC driver, cpu and distributor interfaces */
plat_fpga_gic_init();
}
entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type)
{
entry_point_info_t *next_image_info;
next_image_info = &bl33_image_ep_info;
/* Only expecting BL33: the kernel will run in EL2NS */
assert(type == NON_SECURE);
/* None of the images can have 0x0 as the entrypoint */
if (next_image_info->pc) {
return next_image_info;
} else {
return NULL;
}
}
unsigned int plat_get_syscnt_freq2(void)
{
const void *fdt = (void *)(uintptr_t)FPGA_PRELOADED_DTB_BASE;
int node;
node = fdt_node_offset_by_compatible(fdt, 0, "arm,armv8-timer");
if (node < 0) {
return FPGA_DEFAULT_TIMER_FREQUENCY;
}
return fdt_read_uint32_default(fdt, node, "clock-frequency",
FPGA_DEFAULT_TIMER_FREQUENCY);
}
void bl31_plat_enable_mmu(uint32_t flags)
{
/* TODO: determine if MMU needs to be enabled */
}