arm-trusted-firmware/plat/juno/plat_gic.c

284 lines
10 KiB
C

/*
* Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <gic_v2.h>
#include <interrupt_mgmt.h>
#include <platform.h>
#include "juno_def.h"
#include "juno_private.h"
/* Value used to initialise Non-Secure irq priorities four at a time */
#define DEFAULT_NS_PRIORITY_X4 \
(GIC_HIGHEST_NS_PRIORITY | \
(GIC_HIGHEST_NS_PRIORITY << 8) | \
(GIC_HIGHEST_NS_PRIORITY << 16) | \
(GIC_HIGHEST_NS_PRIORITY << 24))
/*******************************************************************************
* Enable secure interrupts and use FIQs to route them. Disable legacy bypass
* and set the priority mask register to allow all interrupts to trickle in.
******************************************************************************/
void gic_cpuif_setup(unsigned int gicc_base)
{
unsigned int val;
gicc_write_pmr(gicc_base, GIC_PRI_MASK);
val = ENABLE_GRP0 | FIQ_EN;
val |= FIQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP0;
val |= FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1;
gicc_write_ctlr(gicc_base, val);
}
/*******************************************************************************
* Place the cpu interface in a state where it can never make a cpu exit wfi as
* as result of an asserted interrupt. This is critical for powering down a cpu
******************************************************************************/
void gic_cpuif_deactivate(unsigned int gicc_base)
{
unsigned int val;
/* Disable secure, non-secure interrupts and disable their bypass */
val = gicc_read_ctlr(gicc_base);
val &= ~(ENABLE_GRP0 | ENABLE_GRP1);
val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0;
val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1;
gicc_write_ctlr(gicc_base, val);
}
static void gic_set_secure(unsigned int gicd_base, unsigned id)
{
/* Set interrupt as Group 0 */
gicd_clr_igroupr(gicd_base, id);
/* Set priority to max */
gicd_set_ipriorityr(gicd_base, id, GIC_HIGHEST_SEC_PRIORITY);
}
/*******************************************************************************
* Per cpu gic distributor setup which will be done by all cpus after a cold
* boot/hotplug. This marks out the secure interrupts & enables them.
******************************************************************************/
void gic_pcpu_distif_setup(unsigned int gicd_base)
{
unsigned i;
/* Mark all 32 PPI interrupts as Group 1 (non-secure) */
mmio_write_32(gicd_base + GICD_IGROUPR, 0xffffffffu);
/* Setup PPI priorities doing four at a time */
for (i = 0; i < 32; i += 4)
mmio_write_32(gicd_base + GICD_IPRIORITYR + i, DEFAULT_NS_PRIORITY_X4);
/* Configure those PPIs we want as secure, and enable them. */
static const char sec_irq[] = {
IRQ_SEC_PHY_TIMER,
IRQ_SEC_SGI_0,
IRQ_SEC_SGI_1,
IRQ_SEC_SGI_2,
IRQ_SEC_SGI_3,
IRQ_SEC_SGI_4,
IRQ_SEC_SGI_5,
IRQ_SEC_SGI_6,
IRQ_SEC_SGI_7
};
for (i = 0; i < sizeof(sec_irq) / sizeof(sec_irq[0]); i++) {
gic_set_secure(gicd_base, sec_irq[i]);
gicd_set_isenabler(gicd_base, sec_irq[i]);
}
}
/*******************************************************************************
* Global gic distributor setup which will be done by the primary cpu after a
* cold boot. It marks out the secure SPIs, PPIs & SGIs and enables them. It
* then enables the secure GIC distributor interface.
******************************************************************************/
static void gic_distif_setup(unsigned int gicd_base)
{
unsigned int i, ctlr;
const unsigned int ITLinesNumber =
gicd_read_typer(gicd_base) & IT_LINES_NO_MASK;
/* Disable the distributor before going further */
ctlr = gicd_read_ctlr(gicd_base);
ctlr &= ~(ENABLE_GRP0 | ENABLE_GRP1);
gicd_write_ctlr(gicd_base, ctlr);
/* Mark all lines of SPIs as Group 1 (non-secure) */
for (i = 0; i < ITLinesNumber; i++)
mmio_write_32(gicd_base + GICD_IGROUPR + 4 + i * 4, 0xffffffffu);
/* Setup SPI priorities doing four at a time */
for (i = 0; i < ITLinesNumber * 32; i += 4)
mmio_write_32(gicd_base + GICD_IPRIORITYR + 32 + i, DEFAULT_NS_PRIORITY_X4);
/* Configure the SPIs we want as secure */
static const char sec_irq[] = {
IRQ_MHU,
IRQ_GPU_SMMU_0,
IRQ_GPU_SMMU_1,
IRQ_ETR_SMMU,
IRQ_TZC400,
IRQ_TZ_WDOG
};
for (i = 0; i < sizeof(sec_irq) / sizeof(sec_irq[0]); i++)
gic_set_secure(gicd_base, sec_irq[i]);
/* Route watchdog interrupt to this CPU and enable it. */
gicd_set_itargetsr(gicd_base, IRQ_TZ_WDOG,
platform_get_core_pos(read_mpidr()));
gicd_set_isenabler(gicd_base, IRQ_TZ_WDOG);
/* Now setup the PPIs */
gic_pcpu_distif_setup(gicd_base);
/* Enable Group 0 (secure) interrupts */
gicd_write_ctlr(gicd_base, ctlr | ENABLE_GRP0);
}
void gic_setup(void)
{
gic_cpuif_setup(GICC_BASE);
gic_distif_setup(GICD_BASE);
}
/*******************************************************************************
* An ARM processor signals interrupt exceptions through the IRQ and FIQ pins.
* The interrupt controller knows which pin/line it uses to signal a type of
* interrupt. The platform knows which interrupt controller type is being used
* in a particular security state e.g. with an ARM GIC, normal world could use
* the GICv2 features while the secure world could use GICv3 features and vice
* versa.
* This function is exported by the platform to let the interrupt management
* framework determine for a type of interrupt and security state, which line
* should be used in the SCR_EL3 to control its routing to EL3. The interrupt
* line is represented as the bit position of the IRQ or FIQ bit in the SCR_EL3.
******************************************************************************/
uint32_t plat_interrupt_type_to_line(uint32_t type, uint32_t security_state)
{
assert(type == INTR_TYPE_S_EL1 ||
type == INTR_TYPE_EL3 ||
type == INTR_TYPE_NS);
assert(sec_state_is_valid(security_state));
/*
* We ignore the security state parameter because Juno is GICv2 only
* so both normal and secure worlds are using ARM GICv2.
*/
return gicv2_interrupt_type_to_line(GICC_BASE, type);
}
/*******************************************************************************
* This function returns the type of the highest priority pending interrupt at
* the GIC cpu interface. INTR_TYPE_INVAL is returned when there is no
* interrupt pending.
******************************************************************************/
uint32_t plat_ic_get_pending_interrupt_type(void)
{
uint32_t id;
id = gicc_read_hppir(GICC_BASE);
/* Assume that all secure interrupts are S-EL1 interrupts */
if (id < 1022)
return INTR_TYPE_S_EL1;
if (id == GIC_SPURIOUS_INTERRUPT)
return INTR_TYPE_INVAL;
return INTR_TYPE_NS;
}
/*******************************************************************************
* This function returns the id of the highest priority pending interrupt at
* the GIC cpu interface. INTR_ID_UNAVAILABLE is returned when there is no
* interrupt pending.
******************************************************************************/
uint32_t plat_ic_get_pending_interrupt_id(void)
{
uint32_t id;
id = gicc_read_hppir(GICC_BASE);
if (id < 1022)
return id;
if (id == 1023)
return INTR_ID_UNAVAILABLE;
/*
* Find out which non-secure interrupt it is under the assumption that
* the GICC_CTLR.AckCtl bit is 0.
*/
return gicc_read_ahppir(GICC_BASE);
}
/*******************************************************************************
* This functions reads the GIC cpu interface Interrupt Acknowledge register
* to start handling the pending interrupt. It returns the contents of the IAR.
******************************************************************************/
uint32_t plat_ic_acknowledge_interrupt(void)
{
return gicc_read_IAR(GICC_BASE);
}
/*******************************************************************************
* This functions writes the GIC cpu interface End Of Interrupt register with
* the passed value to finish handling the active interrupt
******************************************************************************/
void plat_ic_end_of_interrupt(uint32_t id)
{
gicc_write_EOIR(GICC_BASE, id);
}
/*******************************************************************************
* This function returns the type of the interrupt id depending upon the group
* this interrupt has been configured under by the interrupt controller i.e.
* group0 or group1.
******************************************************************************/
uint32_t plat_ic_get_interrupt_type(uint32_t id)
{
uint32_t group;
group = gicd_get_igroupr(GICD_BASE, id);
/* Assume that all secure interrupts are S-EL1 interrupts */
if (group == GRP0)
return INTR_TYPE_S_EL1;
else
return INTR_TYPE_NS;
}