-*-mode:org-*- * Fully source-based bootstrapping ** R6RS-like scheme interpreter This first part is prototyped in C by the mes.c core and Scheme bootstrap code in module/. Of course, while mes.c is pretty small it cannot serve as a fully source-based solution. The initial idea was to have the minimal core support LISP-1.5 (or something very close to that as a tribute to John McCarthy) and extend eval/apply from LISP-1.5 source with define, define-macro etc. and metamorphose into R6RS. It seemed to work but performance of the LISP-intepreted RRS was so bad (~1000x slower than initial LISP-1.5) that this track was abandoned after the initial ANNOUNCE. The route changed, trying to strike a balance between core size and performance: still writing as much as possible in Scheme but having a mescc compiler that takes not more than some seconds to run. Now that portable R6RS syntax-case runs and mes.c has grown to ~1200LOC with another ~300LOC of optional C code, some effort must probably be directed into making that smaller. ** Move mes.c into hex? One idea is to use OrianJ's amazing self-hosting [[https://github.com/oriansj/stage0][stage0]] hex assembler and minimal bootstrap binaries and rewrite the mes.c core to directly bootstrap into Scheme. ** Rewrite mes.c and generate hex? Another idea (thanks Rutger!) is to rewrite the mes.c core in a C/Assembly variant and thave mescc produce the simple, annotated bootstrap binary. * Bugs ** Core is too fat mes.c is ~1500 lines (~10,000LOC Assembly) which seems much too big to start translating it to assembly/hex. ** Actually do something useful, build: [[https://en.wikipedia.org/wiki/Tiny_C_Compiler][Tiny C Compiler]] * OLD: Booting from LISP-1.5 into Mes Mes started out experimenting with booting from a hex-coded minimal LISP-1.5 (prototype in mes.c), into an almost-RRS Scheme. When EOF is read, the LISP-1.5 machine calls loop2 from loop2.mes, which reads the rest of stdin and takes over control. The functions readenv, eval and apply-env in mes.mes introduced define, define-macro quasiquote and macro expansion. While this works, it's amazingly slow. We implemented a full reader in mes.c, which makes running mes:apply-env mes:eval somewhat bearable, still over 1000x slower than running mes.c. Bootstrapping has been removed and mes.c implements enough of RRS to run a macro-based define-syntax and syntax-rules. loop.mes and mes.mes are unused and lagging behind. Probably it's not worth considering this route without a VM. GNU Epsilon is taking the more usual VM-route to provide multiple personas. While that sounds neat, Lisp/Scheme, bootstrapping and trusted binaries are probably not in scope as there is no mention of such things; only ML is mentioned while Guile is used for bootstrapping. * Assorted ideas and info ** C parser/compiler *** [[https://savannah.gnu.org/projects/nyacc][nyacc]] *** PEG: [[http://piumarta.com/software/peg/][parse C using PEG]] *** [[https://en.wikipedia.org/wiki/Tiny_C_Compiler][Tiny C Compiler]] *** [[http://www.t3x.org/subc/index.html][Sub C]] *** [[https://groups.google.com/forum/#!topic/comp.lang.lisp/VPuX0VsjTTE][C intepreter in LISP/Scheme/Python]] ** C assembler/linker *** [[http://www.tldp.org/HOWTO/Assembly-HOWTO/linux.html][Assembly HOWTO]] *** System call clue bat Basically, you issue an int 0x80, with the __NR_syscallname number (from asm/unistd.h) in eax, and parameters (up to six) in ebx, ecx, edx, esi, edi, ebp respectively. *** ELF 7f 45 4c 46 *** [[http://www.muppetlabs.com/~breadbox/software/tiny/][Small ELF programs]] *** [[http://www.cirosantilli.com/elf-hello-world/][Elf hello world]] ** RNRS *** [[http://www.scheme-reports.org/][Scheme Reports]] *** [[ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-349.pdf][Scheme - Report on Scheme]] *** [[ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-452.pdf][RRS - Revised Report on Scheme]]