partitionmanager/lib/fatlabel/fat.c

797 lines
18 KiB
C

/* Copyright 1996-2006,2008,2009 Alain Knaff.
* Copyright 2010 Volker Lanz (vl@fidra.de)
* This file is part of mtools.
*
* Mtools is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Mtools is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Mtools. If not, see <http://www.gnu.org/licenses/>.
*/
#include "msdos.h"
#include "stream.h"
#include "mtools.h"
#include "fs.h"
#include "file_name.h"
#include "init.h"
#include "force_io.h"
#include "llong.h"
#include "directory.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
typedef long long fatBitMask;
struct FatMap_t {
unsigned char *data;
fatBitMask dirty;
fatBitMask valid;
};
#define SECT_PER_ENTRY (sizeof(fatBitMask)*8)
#define ONE ((fatBitMask) 1)
static int readSector(struct Fs_t *This, char *buf, unsigned int off, size_t size)
{
return READS(This->Next, buf, sectorsToBytes((struct Stream_t *)This, off), size << This->sectorShift);
}
static int forceReadSector(struct Fs_t *This, char *buf, unsigned int off, size_t size)
{
return force_read(This->Next, buf, sectorsToBytes((struct Stream_t *)This, off), size << This->sectorShift);
}
static int forceWriteSector(struct Fs_t *This, char *buf, unsigned int off,
size_t size)
{
return force_write(This->Next, buf, sectorsToBytes((struct Stream_t*)This, off), size << This->sectorShift);
}
static struct FatMap_t *GetFatMap(struct Fs_t *Stream)
{
Stream->fat_error = 0;
int nr_entries = (Stream->fat_len + SECT_PER_ENTRY - 1) / SECT_PER_ENTRY;
struct FatMap_t *map = NewArray(nr_entries, struct FatMap_t);
if(!map)
return NULL;
int i;
for(i=0; i< nr_entries; i++)
{
map[i].data = 0;
map[i].valid = 0;
map[i].dirty = 0;
}
return map;
}
static int locate(struct Fs_t *Stream, size_t offset, int *slot, int *bit)
{
if(offset >= Stream->fat_len)
return -1;
*slot = offset / SECT_PER_ENTRY;
*bit = offset % SECT_PER_ENTRY;
return 0;
}
static int fatReadSector(struct Fs_t *This, int sector, int slot, int bit, int dupe, fatBitMask bitmap)
{
dupe = (dupe + This->primaryFat) % This->num_fat;
int fat_start = This->fat_start + This->fat_len * dupe;
int nr_sectors = (bitmap == 0) ? SECT_PER_ENTRY - bit % SECT_PER_ENTRY : 1;
/* first, read as much as the buffer can give us */
int ret = readSector(This, (char *)(This->FatMap[slot].data+(bit<<This->sectorShift)), fat_start+sector, nr_sectors);
if(ret < 0)
return 0;
if((unsigned int) ret < This->sector_size)
{
/* if we got less than one sector's worth, insist to get at
* least one sector */
ret = forceReadSector(This, (char*) (This->FatMap[slot].data + (bit << This->sectorShift)), fat_start+sector, 1);
if(ret < (int) This->sector_size)
return 0;
return 1;
}
return ret >> This->sectorShift;
}
static int fatWriteSector(struct Fs_t *This, int sector, int slot, int bit, int dupe)
{
dupe = (dupe + This->primaryFat) % This->num_fat;
if (dupe && !This->writeAllFats)
return This->sector_size;
int fat_start = This->fat_start + This->fat_len * dupe;
return forceWriteSector(This, (char*) (This->FatMap[slot].data + bit * This->sector_size), fat_start + sector, 1);
}
static unsigned char *loadSector(struct Fs_t *This, unsigned int sector, fatAccessMode_t mode, int recurs)
{
int slot;
int bit;
if(locate(This,sector, &slot, &bit) < 0)
return 0;
if(!This->FatMap[slot].data)
{
/* allocate the storage space */
This->FatMap[slot].data = malloc(This->sector_size * SECT_PER_ENTRY);
if(!This->FatMap[slot].data)
return 0;
memset(This->FatMap[slot].data, 0xee, This->sector_size * SECT_PER_ENTRY);
}
if(! (This->FatMap[slot].valid & (ONE << bit)))
{
unsigned int i;
int ret = -1;
for(i=0; i< This->num_fat; i++)
{
/* read the sector */
ret = fatReadSector(This, sector, slot, bit, i,
This->FatMap[slot].valid);
if(ret == 0)
{
fprintf(stderr, "Error reading fat number %d\n", i);
continue;
}
if(This->FatMap[slot].valid)
/* Set recurs if there have already been
* sectors loaded in this bitmap long
*/
recurs = 1;
break;
}
/* all copies bad. Return error */
if (ret == 0)
return 0;
for (i=0; (int) i < ret; i++)
This->FatMap[slot].valid |= ONE << (bit + i);
if(!recurs && ret == 1)
/* do some prefetching, if we happened to only
* get one sector */
loadSector(This, sector+1, mode, 1);
}
if(mode == FAT_ACCESS_WRITE)
{
This->FatMap[slot].dirty |= ONE << bit;
This->fat_dirty = 1;
}
return This->FatMap[slot].data + (bit << This->sectorShift);
}
static unsigned char *getAddress(struct Fs_t *Stream, unsigned int num, fatAccessMode_t mode)
{
int sector = num >> Stream->sectorShift;
unsigned char *ret = 0;
if(sector == Stream->lastFatSectorNr && Stream->lastFatAccessMode >= mode)
ret = Stream->lastFatSectorData;
if(!ret)
{
ret = loadSector(Stream, sector, mode, 0);
if(!ret)
return 0;
Stream->lastFatSectorNr = sector;
Stream->lastFatSectorData = ret;
Stream->lastFatAccessMode = mode;
}
return ret + (num & Stream->sectorMask);
}
static int readByte(struct Fs_t *Stream, int start)
{
unsigned char *address = getAddress(Stream, start, FAT_ACCESS_READ);
return address ? *address : -1;
}
/*
* Fat 12 encoding:
* | byte n | byte n+1 | byte n+2 |
* |7|6|5|4|3|2|1|0|7|6|5|4|3|2|1|0|7|6|5|4|3|2|1|0|
* | | | | | | | | | | | | | | | | | | | | | | | | |
* | n+0.0 | n+0.5 | n+1.0 | n+1.5 | n+2.0 | n+2.5 |
* \_____ \____ \______/________/_____ /
* ____\______\________/ _____/ ____\_/
* / \ \ / / \
* | n+1.5 | n+0.0 | n+0.5 | n+2.0 | n+2.5 | n+1.0 |
* | FAT entry k | FAT entry k+1 |
*/
/*
* Get and decode a FAT (file allocation table) entry. Returns the cluster
* number on success or 1 on failure.
*/
static unsigned int fat12_decode(struct Fs_t *Stream, unsigned int num)
{
unsigned int start = num * 3 / 2;
int byte0 = readByte(Stream, start);
int byte1 = readByte(Stream, start+1);
if (num < 2 || byte0 < 0 || byte1 < 0 || num > Stream->num_clus+1)
{
fprintf(stderr,"[1] Bad address %d\n", num);
return 1;
}
if (num & 1)
return (byte1 << 4) | ((byte0 & 0xf0)>>4);
else
return ((byte1 & 0xf) << 8) | byte0;
}
/*
* Puts a code into the FAT table. Is the opposite of fat_decode(). No
* sanity checking is done on the code. Returns a 1 on error.
*/
static void fat12_encode(struct Fs_t *Stream, unsigned int num, unsigned int code)
{
const int start = num * 3 / 2;
unsigned char *address0 = getAddress(Stream, start, FAT_ACCESS_WRITE);
unsigned char *address1 = getAddress(Stream, start+1, FAT_ACCESS_WRITE);
if (num & 1)
{
/* (odd) not on byte boundary */
*address0 = (*address0 & 0x0f) | ((code << 4) & 0xf0);
*address1 = (code >> 4) & 0xff;
}
else
{
/* (even) on byte boundary */
*address0 = code & 0xff;
*address1 = (*address1 & 0xf0) | ((code >> 8) & 0x0f);
}
}
/*
* Fat 16 encoding:
* | byte n | byte n+1 |
* |7|6|5|4|3|2|1|0|7|6|5|4|3|2|1|0|
* | | | | | | | | | | | | | | | | |
* | FAT entry k |
*/
static unsigned int fat16_decode(struct Fs_t *Stream, unsigned int num)
{
unsigned char *address = getAddress(Stream, num << 1, FAT_ACCESS_READ);
return address ? _WORD(address) : 1;
}
static void fat16_encode(struct Fs_t *Stream, unsigned int num, unsigned int code)
{
unsigned char *address = getAddress(Stream, num << 1, FAT_ACCESS_WRITE);
set_word(address, code);
}
static unsigned int fast_fat16_decode(struct Fs_t *Stream, unsigned int num)
{
unsigned short *address = (unsigned short *) getAddress(Stream, num << 1, FAT_ACCESS_READ);
return address ? *address : 1;
}
static void fast_fat16_encode(struct Fs_t *Stream, unsigned int num, unsigned int code)
{
unsigned short *address = (unsigned short *) getAddress(Stream, num << 1, FAT_ACCESS_WRITE);
*address = code;
}
/*
* Fat 32 encoding
*/
#define FAT32_HIGH 0xf0000000
#define FAT32_ADDR 0x0fffffff
static unsigned int fat32_decode(struct Fs_t *Stream, unsigned int num)
{
unsigned char *address = getAddress(Stream, num << 2, FAT_ACCESS_READ);
return address ? _DWORD(address) & FAT32_ADDR : 1;
}
static void fat32_encode(struct Fs_t *Stream, unsigned int num, unsigned int code)
{
unsigned char *address = getAddress(Stream, num << 2, FAT_ACCESS_WRITE);
set_dword(address,(code&FAT32_ADDR) | (_DWORD(address)&FAT32_HIGH));
}
static unsigned int fast_fat32_decode(struct Fs_t *Stream, unsigned int num)
{
unsigned int *address = (unsigned int *) getAddress(Stream, num << 2, FAT_ACCESS_READ);
return address ? *address & FAT32_ADDR : 1;
}
static void fast_fat32_encode(struct Fs_t *Stream, unsigned int num, unsigned int code)
{
unsigned int *address = (unsigned int *) getAddress(Stream, num << 2, FAT_ACCESS_WRITE);
*address = (*address & FAT32_HIGH) | (code & FAT32_ADDR);
}
/*
* Write the FAT table to the disk. Up to now the FAT manipulation has
* been done in memory. All errors are fatal. (Might not be too smart
* to wait till the end of the program to write the table. Oh well...)
*/
int fat_write(struct Fs_t *This)
{
unsigned int i;
unsigned int j;
unsigned int bit;
unsigned int slot;
int ret;
int fat_start;
if (!This->fat_dirty)
return 0;
unsigned int dups = This->num_fat;
if (This->fat_error)
dups = 1;
for(i = 0; i < dups; i++)
{
j = 0;
fat_start = This->fat_start + i*This->fat_len;
for (slot = 0; j < This->fat_len; slot++)
{
if(!This->FatMap[slot].dirty)
{
j += SECT_PER_ENTRY;
continue;
}
for(bit = 0; bit < SECT_PER_ENTRY && j < This->fat_len; bit++, j++)
{
if(!(This->FatMap[slot].dirty & (ONE << bit)))
continue;
ret = fatWriteSector(This,j,slot, bit, i);
if (ret < (int) This->sector_size)
{
if (ret < 0)
{
perror("error in fat_write");
return -1; // TODO: check in caller
}
fprintf(stderr, "end of file in fat_write\n");
return -1; // TODO: check in caller
}
/* if last dupe, zero it out */
if (i == dups - 1)
This->FatMap[slot].dirty &= ~(ONE << bit);
}
}
}
/* write the info sector, if any */
if(This->infoSectorLoc && This->infoSectorLoc != MAX32)
{
/* initialize info sector */
struct InfoSector_t *infoSector = malloc(This->sector_size);
set_dword(infoSector->signature1, INFOSECT_SIGNATURE1);
memset(infoSector->filler1, 0, sizeof(infoSector->filler1));
memset(infoSector->filler2, 0, sizeof(infoSector->filler2));
set_dword(infoSector->signature2, INFOSECT_SIGNATURE2);
set_dword(infoSector->pos, This->last);
set_dword(infoSector->count, This->freeSpace);
set_dword(infoSector->signature3, 0xaa55);
if(forceWriteSector(This, (char *)infoSector, This->infoSectorLoc, 1) != (signed int) This->sector_size)
fprintf(stderr,"Trouble writing the info sector\n");
free(infoSector);
}
This->fat_dirty = 0;
This->lastFatAccessMode = FAT_ACCESS_READ;
return 0;
}
static void set_fat12(struct Fs_t *This)
{
This->fat_bits = 12;
This->end_fat = 0xfff;
This->last_fat = 0xff6;
This->fat_decode = fat12_decode;
This->fat_encode = fat12_encode;
}
static char word_endian_test[] = { 0x34, 0x12 };
static void set_fat16(struct Fs_t *This)
{
This->fat_bits = 16;
This->end_fat = 0xffff;
This->last_fat = 0xfff6;
if(sizeof(unsigned short) == 2 && * (unsigned short *) word_endian_test == 0x1234) {
This->fat_decode = fast_fat16_decode;
This->fat_encode = fast_fat16_encode;
}
else
{
This->fat_decode = fat16_decode;
This->fat_encode = fat16_encode;
}
}
static char dword_endian_test[] = { 0x78, 0x56, 0x34, 0x12 };
static void set_fat32(struct Fs_t *This)
{
This->fat_bits = 32;
This->end_fat = 0xfffffff;
This->last_fat = 0xffffff6;
if(sizeof(unsigned int) == 4 && * (unsigned int *) dword_endian_test == 0x12345678)
{
This->fat_decode = fast_fat32_decode;
This->fat_encode = fast_fat32_encode;
}
else
{
This->fat_decode = fat32_decode;
This->fat_encode = fat32_encode;
}
}
/*
* Read the first sector of FAT table into memory. Crude error detection on
* wrong FAT encoding scheme.
*/
static int check_media_type(struct Fs_t *This, union bootsector UNUSED(*boot), unsigned int tot_sectors)
{
This->num_clus = (tot_sectors - This->clus_start) / This->cluster_size;
This->FatMap = GetFatMap(This);
if (This->FatMap == NULL)
{
perror("alloc fat map");
return -1;
}
unsigned char* address = getAddress(This, 0, FAT_ACCESS_READ);
if(!address)
{
fprintf(stderr, "Could not read first FAT sector\n");
return -1;
}
return 0;
}
static int fat_32_read(struct Fs_t *This, union bootsector *boot, unsigned int tot_sectors)
{
int size;
This->fat_len = DWORD(ext.fat32.bigFat);
This->writeAllFats = !(boot->boot.ext.fat32.extFlags[0] & 0x80);
This->primaryFat = boot->boot.ext.fat32.extFlags[0] & 0xf;
This->rootCluster = DWORD(ext.fat32.rootCluster);
This->clus_start = This->fat_start + This->num_fat * This->fat_len;
/* read the info sector */
size = This->sector_size;
This->infoSectorLoc = WORD(ext.fat32.infoSector);
if (This->sector_size >= 512 && This->infoSectorLoc && This->infoSectorLoc != MAX32)
{
struct InfoSector_t *infoSector = (struct InfoSector_t *) malloc(size);
if (forceReadSector(This, (char *)infoSector, This->infoSectorLoc, 1) == (signed int) This->sector_size
&& _DWORD(infoSector->signature1) == INFOSECT_SIGNATURE1
&& _DWORD(infoSector->signature2) == INFOSECT_SIGNATURE2)
{
This->freeSpace = _DWORD(infoSector->count);
This->last = _DWORD(infoSector->pos);
}
free(infoSector);
}
set_fat32(This);
return check_media_type(This, boot, tot_sectors);
}
static int old_fat_read(struct Fs_t *This, union bootsector *boot, int UNUSED(config_fat_bits), size_t tot_sectors, int nodups)
{
This->writeAllFats = 1;
This->primaryFat = 0;
This->dir_start = This->fat_start + This->num_fat * This->fat_len;
This->clus_start = This->dir_start + This->dir_len;
This->infoSectorLoc = MAX32;
if(nodups)
This->num_fat = 1;
if(check_media_type(This,boot, tot_sectors))
return -1;
if(This->num_clus >= FAT12)
set_fat16(This); /* third FAT byte must be 0xff */
else
set_fat12(This);
return 0;
}
/*
* Read the first sector of the FAT table into memory and initialize
* structures.
*/
int fat_read(struct Fs_t *This, union bootsector *boot, int fat_bits, size_t tot_sectors, int nodups)
{
This->fat_error = 0;
This->fat_dirty = 0;
This->last = MAX32;
This->freeSpace = MAX32;
This->lastFatSectorNr = 0;
This->lastFatSectorData = 0;
return (This->fat_len) ? old_fat_read(This, boot, fat_bits, tot_sectors, nodups) : fat_32_read(This, boot, tot_sectors);
}
unsigned int fatDecode(struct Fs_t *This, unsigned int pos)
{
unsigned int ret = This->fat_decode(This, pos);
if(ret && (ret < 2 || ret > This->num_clus+1) && ret < This->last_fat)
{
fprintf(stderr, "Bad FAT entry %d at %d\n", ret, pos);
This->fat_error++;
}
return ret;
}
/* append a new cluster */
void fatAppend(struct Fs_t *This, unsigned int pos, unsigned int newpos)
{
This->fat_encode(This, pos, newpos);
This->fat_encode(This, newpos, This->end_fat);
if(This->freeSpace != MAX32)
This->freeSpace--;
}
/* de-allocates the given cluster */
void fatDeallocate(struct Fs_t *This, unsigned int pos)
{
This->fat_encode(This, pos, 0);
if(This->freeSpace != MAX32)
This->freeSpace++;
}
/* allocate a new cluster */
void fatAllocate(struct Fs_t *This, unsigned int pos, unsigned int value)
{
This->fat_encode(This, pos, value);
if(This->freeSpace != MAX32)
This->freeSpace--;
}
unsigned int get_next_free_cluster(struct Fs_t *This, unsigned int last)
{
unsigned int i;
if (This->last != MAX32)
last = This->last;
if (last < 2 || last >= This->num_clus+1)
last = 1;
for (i = last + 1; i < This->num_clus + 2; i++)
{
unsigned int r = fatDecode(This, i);
if(r == 1)
goto exit_0;
if (!r)
{
This->last = i;
return i;
}
}
for(i = 2; i < last + 1; i++)
{
unsigned int r = fatDecode(This, i);
if(r == 1)
goto exit_0;
if (!r)
{
This->last = i;
return i;
}
}
fprintf(stderr,"No free cluster %d %d\n", This->preallocatedClusters, This->last);
return 1;
exit_0:
fprintf(stderr, "FAT error\n");
return 1;
}
int fat_error(struct Stream_t *Dir)
{
struct Stream_t *Stream = GetFs(Dir);
DeclareThis(struct Fs_t);
if(This->fat_error)
fprintf(stderr,"Fat error detected\n");
return This->fat_error;
}
int fat32RootCluster(struct Stream_t *Dir)
{
struct Stream_t *Stream = GetFs(Dir);
DeclareThis(struct Fs_t);
return This->fat_bits == 32 ? This->rootCluster : 0;
}
/*
* Ensure that there is a minimum of total sectors free
*/
int getfreeMinClusters(struct Stream_t *Dir, size_t size)
{
struct Stream_t *Stream = GetFs(Dir);
DeclareThis(struct Fs_t);
if(This->freeSpace != MAX32)
{
if (This->freeSpace >= size)
return 1;
else
{
fprintf(stderr, "Disk full\n");
return 0;
}
}
size_t total = 0;
/* we start at the same place where we'll start later to actually
* allocate the sectors. That way, the same sectors of the FAT, which
* are already loaded during getfreeMin will be able to be reused
* during get_next_free_cluster */
unsigned int last = This->last;
if (last < 2 || last >= This->num_clus + 2)
last = 1;
unsigned int i;
for (i=last+1; i< This->num_clus+2; i++)
{
unsigned int r = fatDecode(This, i);
if(r == 1)
goto exit_0;
if (!r)
total++;
if(total >= size)
return 1;
}
for(i=2; i < last+1; i++)
{
unsigned int r = fatDecode(This, i);
if(r == 1)
goto exit_0;
if (!r)
total++;
if(total >= size)
return 1;
}
fprintf(stderr, "Disk full\n");
return 0;
exit_0:
fprintf(stderr, "FAT error\n");
return 0;
}
unsigned int getStart(struct Stream_t *Dir, struct directory *dir)
{
struct Stream_t *Stream = GetFs(Dir);
unsigned int first = START(dir);
if(fat32RootCluster(Stream))
first |= STARTHI(dir) << 16;
return first;
}
int fs_free(struct Stream_t *Stream)
{
DeclareThis(struct Fs_t);
if (This->FatMap)
{
const int nr_entries = (This->fat_len + SECT_PER_ENTRY - 1) / SECT_PER_ENTRY;
for (int i = 0; i < nr_entries; i++)
if (This->FatMap[i].data)
free(This->FatMap[i].data);
free(This->FatMap);
}
if (This->cp)
cp_close(This->cp);
return 0;
}