diff --git a/scrambling.cpp b/scrambling.cpp index fde7508..e8a62fd 100644 --- a/scrambling.cpp +++ b/scrambling.cpp @@ -73,19 +73,12 @@ int main() // Now we calculate entanglement entropies using Fitzpatrick, Kaplan, Walters formula. double S_A = c/6 * log(Fitzpatrick(zA, zAbar, y < tMinus + tOmega && tMinus + tOmega < y + L ? 2*M_PI : 0)); - // std::cerr << "S_A = " << S_A << std::endl; - // double S_A_analytic = c/6 * log(beta/M_PI/epsilon/sinh(M_PI*L/beta)*sinh(M_PI/beta*(y+L-tMinus-tOmega))*sinh(M_PI/beta*(tMinus+tOmega-y)) * sin(M_PI*alpha)/alpha); -// double S_A_analytic = 0; -// std::cerr << "S_A (analytic) = " << S_A_analytic << std::endl; double S_B = c/6 * log(Fitzpatrick(zB, zBbar, 0)); double S_union = c/6 * log(Fitzpatrick(z2, z2bar, y < tMinus + tOmega ? 2*M_PI : 0) * Fitzpatrick(z5, z5bar, y +L < tMinus + tOmega ? -2*M_PI : 0)); -// std::cerr << "S_A+B = " << S_union << std::endl; double S_union_analytic = c/3 * log(beta/M_PI/epsilon * sin(M_PI*alpha)/alpha) + c/6* log(sinh(M_PI/beta*(tMinus + tOmega - y)) * cosh(M_PI/beta*(tPlus + tOmega - y)) * sinh(M_PI/beta*(tMinus + tOmega - y - L)) * cosh(M_PI/beta*(tPlus + tOmega - y - L))); -// std::cerr << "S_A+B (analytic) = " << S_union_analytic << std::endl; double S_thermal = 2*c/3 * log(sinh(M_PI*L/beta)/cosh(M_PI/beta*(tMinus-tPlus))); double I = S_A + S_B - S_union + S_thermal; -// double I_analytic = S_A_analytic - S_union_analytic + S_thermal; - std::cout << tOmega << "\t" << I /*<< "\t" << I_analytic*/ << std::endl; + std::cout << tOmega << "\t" << I << std::endl; } return 0; }