arm-trusted-firmware/common/fdt_wrappers.c

642 lines
17 KiB
C
Raw Permalink Normal View History

/*
* Copyright (c) 2018-2022, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
/* Helper functions to offer easier navigation of Device Tree Blob */
#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <stdint.h>
#include <string.h>
#include <libfdt.h>
#include <common/debug.h>
#include <common/fdt_wrappers.h>
#include <common/uuid.h>
/*
* Read cells from a given property of the given node. Any number of 32-bit
* cells of the property can be read. Returns 0 on success, or a negative
* FDT error value otherwise.
*/
int fdt_read_uint32_array(const void *dtb, int node, const char *prop_name,
unsigned int cells, uint32_t *value)
{
const fdt32_t *prop;
int value_len;
assert(dtb != NULL);
assert(prop_name != NULL);
assert(value != NULL);
assert(node >= 0);
/* Access property and obtain its length (in bytes) */
prop = fdt_getprop(dtb, node, prop_name, &value_len);
if (prop == NULL) {
VERBOSE("Couldn't find property %s in dtb\n", prop_name);
return -FDT_ERR_NOTFOUND;
}
/* Verify that property length can fill the entire array. */
if (NCELLS((unsigned int)value_len) < cells) {
WARN("Property length mismatch\n");
return -FDT_ERR_BADVALUE;
}
for (unsigned int i = 0U; i < cells; i++) {
value[i] = fdt32_to_cpu(prop[i]);
}
return 0;
}
fdt/wrappers: Replace fdtw_read_cells() implementation Our fdtw_read_cells() implementation goes to great lengths to sanity-check every parameter and result, but leaves a big hole open: The size of the storage the value pointer points at needs to match the number of cells given. This can't be easily checked at compile time, since we lose the size information by using a void pointer. Regardless the current usage of this function is somewhat wrong anyways, since we use it on single-element, fixed-length properties only, for which the DT binding specifies the size. Typically we use those functions dealing with a number of cells in DT context to deal with *dynamically* sized properties, which depend on other properties (#size-cells, #clock-cells, ...), to specify the number of cells needed. Another problem with the current implementation is the use of ambiguously sized types (uintptr_t, size_t) together with a certain expectation about their size. In general there is no relation between the length of a DT property and the bitness of the code that parses the DTB: AArch64 code could encounter 32-bit addresses (where the physical address space is limited to 4GB [1]), while AArch32 code could read 64-bit sized properties (/memory nodes on LPAE systems, [2]). To make this more clear, fix the potential issues and also align more with other DT users (Linux and U-Boot), introduce functions to explicitly read uint32 and uint64 properties. As the other DT consumers, we do this based on the generic "read array" function. Convert all users to use either of those two new functions, and make sure we never use a pointer to anything other than uint32_t or uint64_t variables directly. This reveals (and fixes) a bug in plat_spmd_manifest.c, where we write 4 bytes into a uint16_t variable (passed via a void pointer). Also we change the implementation of the function to better align with other libfdt users, by using the right types (fdt32_t) and common variable names (*prop, prop_names). [1] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/arm64/boot/dts/allwinner/sun50i-a64.dtsi#n874 [2] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/arm/boot/dts/ecx-2000.dts Change-Id: I718de960515117ac7a3331a1b177d2ec224a3890 Signed-off-by: Andre Przywara <andre.przywara@arm.com>
2020-03-26 11:22:37 +00:00
int fdt_read_uint32(const void *dtb, int node, const char *prop_name,
uint32_t *value)
{
return fdt_read_uint32_array(dtb, node, prop_name, 1, value);
}
uint32_t fdt_read_uint32_default(const void *dtb, int node,
const char *prop_name, uint32_t dflt_value)
{
uint32_t ret = dflt_value;
int err = fdt_read_uint32(dtb, node, prop_name, &ret);
if (err < 0) {
return dflt_value;
}
return ret;
}
fdt/wrappers: Replace fdtw_read_cells() implementation Our fdtw_read_cells() implementation goes to great lengths to sanity-check every parameter and result, but leaves a big hole open: The size of the storage the value pointer points at needs to match the number of cells given. This can't be easily checked at compile time, since we lose the size information by using a void pointer. Regardless the current usage of this function is somewhat wrong anyways, since we use it on single-element, fixed-length properties only, for which the DT binding specifies the size. Typically we use those functions dealing with a number of cells in DT context to deal with *dynamically* sized properties, which depend on other properties (#size-cells, #clock-cells, ...), to specify the number of cells needed. Another problem with the current implementation is the use of ambiguously sized types (uintptr_t, size_t) together with a certain expectation about their size. In general there is no relation between the length of a DT property and the bitness of the code that parses the DTB: AArch64 code could encounter 32-bit addresses (where the physical address space is limited to 4GB [1]), while AArch32 code could read 64-bit sized properties (/memory nodes on LPAE systems, [2]). To make this more clear, fix the potential issues and also align more with other DT users (Linux and U-Boot), introduce functions to explicitly read uint32 and uint64 properties. As the other DT consumers, we do this based on the generic "read array" function. Convert all users to use either of those two new functions, and make sure we never use a pointer to anything other than uint32_t or uint64_t variables directly. This reveals (and fixes) a bug in plat_spmd_manifest.c, where we write 4 bytes into a uint16_t variable (passed via a void pointer). Also we change the implementation of the function to better align with other libfdt users, by using the right types (fdt32_t) and common variable names (*prop, prop_names). [1] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/arm64/boot/dts/allwinner/sun50i-a64.dtsi#n874 [2] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/arm/boot/dts/ecx-2000.dts Change-Id: I718de960515117ac7a3331a1b177d2ec224a3890 Signed-off-by: Andre Przywara <andre.przywara@arm.com>
2020-03-26 11:22:37 +00:00
int fdt_read_uint64(const void *dtb, int node, const char *prop_name,
uint64_t *value)
{
uint32_t array[2] = {0, 0};
int ret;
ret = fdt_read_uint32_array(dtb, node, prop_name, 2, array);
if (ret < 0) {
return ret;
}
*value = ((uint64_t)array[0] << 32) | array[1];
return 0;
}
/*
* Read bytes from a given property of the given node. Any number of
* bytes of the property can be read. The fdt pointer is updated.
* Returns 0 on success, and -1 on error.
*/
int fdtw_read_bytes(const void *dtb, int node, const char *prop,
unsigned int length, void *value)
{
const void *ptr;
int value_len;
assert(dtb != NULL);
assert(prop != NULL);
assert(value != NULL);
assert(node >= 0);
/* Access property and obtain its length (in bytes) */
ptr = fdt_getprop_namelen(dtb, node, prop, (int)strlen(prop),
&value_len);
if (ptr == NULL) {
WARN("Couldn't find property %s in dtb\n", prop);
return -1;
}
/* Verify that property length is not less than number of bytes */
if ((unsigned int)value_len < length) {
WARN("Property length mismatch\n");
return -1;
}
(void)memcpy(value, ptr, length);
return 0;
}
/*
* Read string from a given property of the given node. Up to 'size - 1'
* characters are read, and a NUL terminator is added. Returns 0 on success,
* and -1 upon error.
*/
int fdtw_read_string(const void *dtb, int node, const char *prop,
char *str, size_t size)
{
const char *ptr;
size_t len;
assert(dtb != NULL);
assert(node >= 0);
assert(prop != NULL);
assert(str != NULL);
assert(size > 0U);
ptr = fdt_getprop_namelen(dtb, node, prop, (int)strlen(prop), NULL);
if (ptr == NULL) {
WARN("Couldn't find property %s in dtb\n", prop);
return -1;
}
len = strlcpy(str, ptr, size);
if (len >= size) {
WARN("String of property %s in dtb has been truncated\n", prop);
return -1;
}
return 0;
}
/*
* Read UUID from a given property of the given node. Returns 0 on success,
* and a negative value upon error.
*/
int fdtw_read_uuid(const void *dtb, int node, const char *prop,
unsigned int length, uint8_t *uuid)
{
/* Buffer for UUID string (plus NUL terminator) */
char uuid_string[UUID_STRING_LENGTH + 1U];
int err;
assert(dtb != NULL);
assert(prop != NULL);
assert(uuid != NULL);
assert(node >= 0);
if (length < UUID_BYTES_LENGTH) {
return -EINVAL;
}
err = fdtw_read_string(dtb, node, prop, uuid_string,
UUID_STRING_LENGTH + 1U);
if (err != 0) {
return err;
}
if (read_uuid(uuid, uuid_string) != 0) {
return -FDT_ERR_BADVALUE;
}
return 0;
}
/*
* Write cells in place to a given property of the given node. At most 2 cells
* of the property are written. Returns 0 on success, and -1 upon error.
*/
int fdtw_write_inplace_cells(void *dtb, int node, const char *prop,
unsigned int cells, void *value)
{
int err, len;
assert(dtb != NULL);
assert(prop != NULL);
assert(value != NULL);
assert(node >= 0);
/* We expect either 1 or 2 cell property */
assert(cells <= 2U);
if (cells == 2U)
*(uint64_t *)value = cpu_to_fdt64(*(uint64_t *)value);
else
*(uint32_t *)value = cpu_to_fdt32(*(uint32_t *)value);
len = (int)cells * 4;
/* Set property value in place */
err = fdt_setprop_inplace(dtb, node, prop, value, len);
if (err != 0) {
WARN("Modify property %s failed with error %d\n", prop, err);
return -1;
}
return 0;
}
/*
* Write bytes in place to a given property of the given node.
* Any number of bytes of the property can be written.
* Returns 0 on success, and < 0 on error.
*/
int fdtw_write_inplace_bytes(void *dtb, int node, const char *prop,
unsigned int length, const void *data)
{
const void *ptr;
int namelen, value_len, err;
assert(dtb != NULL);
assert(prop != NULL);
assert(data != NULL);
assert(node >= 0);
namelen = (int)strlen(prop);
/* Access property and obtain its length in bytes */
ptr = fdt_getprop_namelen(dtb, node, prop, namelen, &value_len);
if (ptr == NULL) {
WARN("Couldn't find property %s in dtb\n", prop);
return -1;
}
/* Verify that property length is not less than number of bytes */
if ((unsigned int)value_len < length) {
WARN("Property length mismatch\n");
return -1;
}
/* Set property value in place */
err = fdt_setprop_inplace_namelen_partial(dtb, node, prop,
namelen, 0,
data, (int)length);
if (err != 0) {
WARN("Set property %s failed with error %d\n", prop, err);
}
return err;
}
static uint64_t fdt_read_prop_cells(const fdt32_t *prop, int nr_cells)
{
uint64_t reg = fdt32_to_cpu(prop[0]);
if (nr_cells > 1) {
reg = (reg << 32) | fdt32_to_cpu(prop[1]);
}
return reg;
}
int fdt_get_reg_props_by_index(const void *dtb, int node, int index,
uintptr_t *base, size_t *size)
{
const fdt32_t *prop;
int parent, len;
int ac, sc;
int cell;
parent = fdt_parent_offset(dtb, node);
if (parent < 0) {
return -FDT_ERR_BADOFFSET;
}
ac = fdt_address_cells(dtb, parent);
sc = fdt_size_cells(dtb, parent);
cell = index * (ac + sc);
prop = fdt_getprop(dtb, node, "reg", &len);
if (prop == NULL) {
WARN("Couldn't find \"reg\" property in dtb\n");
return -FDT_ERR_NOTFOUND;
}
if (((cell + ac + sc) * (int)sizeof(uint32_t)) > len) {
return -FDT_ERR_BADVALUE;
}
if (base != NULL) {
*base = (uintptr_t)fdt_read_prop_cells(&prop[cell], ac);
}
if (size != NULL) {
*size = (size_t)fdt_read_prop_cells(&prop[cell + ac], sc);
}
return 0;
}
/*******************************************************************************
* This function fills reg node info (base & size) with an index found by
* checking the reg-names node.
* Returns 0 on success and a negative FDT error code on failure.
******************************************************************************/
int fdt_get_reg_props_by_name(const void *dtb, int node, const char *name,
uintptr_t *base, size_t *size)
{
int index;
index = fdt_stringlist_search(dtb, node, "reg-names", name);
if (index < 0) {
return index;
}
return fdt_get_reg_props_by_index(dtb, node, index, base, size);
}
/*******************************************************************************
* This function gets the stdout path node.
* It reads the value indicated inside the device tree.
* Returns node offset on success and a negative FDT error code on failure.
******************************************************************************/
int fdt_get_stdout_node_offset(const void *dtb)
{
int node;
const char *prop, *path;
int len;
/* The /secure-chosen node takes precedence over the standard one. */
node = fdt_path_offset(dtb, "/secure-chosen");
if (node < 0) {
node = fdt_path_offset(dtb, "/chosen");
if (node < 0) {
return -FDT_ERR_NOTFOUND;
}
}
prop = fdt_getprop(dtb, node, "stdout-path", NULL);
if (prop == NULL) {
return -FDT_ERR_NOTFOUND;
}
/* Determine the actual path length, as a colon terminates the path. */
path = strchr(prop, ':');
if (path == NULL) {
len = strlen(prop);
} else {
len = path - prop;
}
/* Aliases cannot start with a '/', so it must be the actual path. */
if (prop[0] == '/') {
return fdt_path_offset_namelen(dtb, prop, len);
}
/* Lookup the alias, as this contains the actual path. */
path = fdt_get_alias_namelen(dtb, prop, len);
if (path == NULL) {
return -FDT_ERR_NOTFOUND;
}
return fdt_path_offset(dtb, path);
}
/*******************************************************************************
* Only devices which are direct children of root node use CPU address domain.
* All other devices use addresses that are local to the device node and cannot
* directly used by CPU. Device tree provides an address translation mechanism
* through "ranges" property which provides mappings from local address space to
* parent address space. Since a device could be a child of a child node to the
* root node, there can be more than one level of address translation needed to
* map the device local address space to CPU address space.
* fdtw_translate_address() API performs address translation of a local address
* to a global address with help of various helper functions.
******************************************************************************/
static bool fdtw_xlat_hit(const uint32_t *value, int child_addr_size,
int parent_addr_size, int range_size, uint64_t base_address,
uint64_t *translated_addr)
{
uint64_t local_address, parent_address, addr_range;
local_address = fdt_read_prop_cells(value, child_addr_size);
parent_address = fdt_read_prop_cells(value + child_addr_size,
parent_addr_size);
addr_range = fdt_read_prop_cells(value + child_addr_size +
parent_addr_size,
range_size);
VERBOSE("DT: Address %" PRIx64 " mapped to %" PRIx64 " with range %" PRIx64 "\n",
local_address, parent_address, addr_range);
/* Perform range check */
if ((base_address < local_address) ||
(base_address >= local_address + addr_range)) {
return false;
}
/* Found hit for the addr range that needs to be translated */
*translated_addr = parent_address + (base_address - local_address);
VERBOSE("DT: child address %" PRIx64 "mapped to %" PRIx64 " in parent bus\n",
local_address, parent_address);
return true;
}
#define ILLEGAL_ADDR ULL(~0)
static uint64_t fdtw_search_all_xlat_entries(const void *dtb,
const struct fdt_property *ranges_prop,
int local_bus, uint64_t base_address)
{
uint64_t translated_addr;
const uint32_t *next_entry;
int parent_bus_node, nxlat_entries, length;
int self_addr_cells, parent_addr_cells, self_size_cells, ncells_xlat;
/*
* The number of cells in one translation entry in ranges is the sum of
* the following values:
* self#address-cells + parent#address-cells + self#size-cells
* Ex: the iofpga ranges property has one translation entry with 4 cells
* They represent iofpga#addr-cells + motherboard#addr-cells + iofpga#size-cells
* = 1 + 2 + 1
*/
parent_bus_node = fdt_parent_offset(dtb, local_bus);
self_addr_cells = fdt_address_cells(dtb, local_bus);
self_size_cells = fdt_size_cells(dtb, local_bus);
parent_addr_cells = fdt_address_cells(dtb, parent_bus_node);
/* Number of cells per translation entry i.e., mapping */
ncells_xlat = self_addr_cells + parent_addr_cells + self_size_cells;
assert(ncells_xlat > 0);
/*
* Find the number of translations(mappings) specified in the current
* `ranges` property. Note that length represents number of bytes and
* is stored in big endian mode.
*/
length = fdt32_to_cpu(ranges_prop->len);
nxlat_entries = (length/sizeof(uint32_t))/ncells_xlat;
assert(nxlat_entries > 0);
next_entry = (const uint32_t *)ranges_prop->data;
/* Iterate over the entries in the "ranges" */
for (int i = 0; i < nxlat_entries; i++) {
if (fdtw_xlat_hit(next_entry, self_addr_cells,
parent_addr_cells, self_size_cells, base_address,
&translated_addr)){
return translated_addr;
}
next_entry = next_entry + ncells_xlat;
}
INFO("DT: No translation found for address %" PRIx64 " in node %s\n",
base_address, fdt_get_name(dtb, local_bus, NULL));
return ILLEGAL_ADDR;
}
/*******************************************************************************
* address mapping needs to be done recursively starting from current node to
* root node through all intermediate parent nodes.
* Sample device tree is shown here:
smb@0,0 {
compatible = "simple-bus";
#address-cells = <2>;
#size-cells = <1>;
ranges = <0 0 0 0x08000000 0x04000000>,
<1 0 0 0x14000000 0x04000000>,
<2 0 0 0x18000000 0x04000000>,
<3 0 0 0x1c000000 0x04000000>,
<4 0 0 0x0c000000 0x04000000>,
<5 0 0 0x10000000 0x04000000>;
motherboard {
arm,v2m-memory-map = "rs1";
compatible = "arm,vexpress,v2m-p1", "simple-bus";
#address-cells = <2>;
#size-cells = <1>;
ranges;
iofpga@3,00000000 {
compatible = "arm,amba-bus", "simple-bus";
#address-cells = <1>;
#size-cells = <1>;
ranges = <0 3 0 0x200000>;
v2m_serial1: uart@a0000 {
compatible = "arm,pl011", "arm,primecell";
reg = <0x0a0000 0x1000>;
interrupts = <0 6 4>;
clocks = <&v2m_clk24mhz>, <&v2m_clk24mhz>;
clock-names = "uartclk", "apb_pclk";
};
};
};
* As seen above, there are 3 levels of address translations needed. An empty
* `ranges` property denotes identity mapping (as seen in `motherboard` node).
* Each ranges property can map a set of child addresses to parent bus. Hence
* there can be more than 1 (translation) entry in the ranges property as seen
* in the `smb` node which has 6 translation entries.
******************************************************************************/
/* Recursive implementation */
uint64_t fdtw_translate_address(const void *dtb, int node,
uint64_t base_address)
{
int length, local_bus_node;
const char *node_name;
uint64_t global_address;
local_bus_node = fdt_parent_offset(dtb, node);
node_name = fdt_get_name(dtb, local_bus_node, NULL);
/*
* In the example given above, starting from the leaf node:
* uart@a000 represents the current node
* iofpga@3,00000000 represents the local bus
* motherboard represents the parent bus
*/
/* Read the ranges property */
const struct fdt_property *property = fdt_get_property(dtb,
local_bus_node, "ranges", &length);
if (property == NULL) {
if (local_bus_node == 0) {
/*
* root node doesn't have range property as addresses
* are in CPU address space.
*/
return base_address;
}
INFO("DT: Couldn't find ranges property in node %s\n",
node_name);
return ILLEGAL_ADDR;
} else if (length == 0) {
/* empty ranges indicates identity map to parent bus */
return fdtw_translate_address(dtb, local_bus_node, base_address);
}
VERBOSE("DT: Translation lookup in node %s at offset %d\n", node_name,
local_bus_node);
global_address = fdtw_search_all_xlat_entries(dtb, property,
local_bus_node, base_address);
if (global_address == ILLEGAL_ADDR) {
return ILLEGAL_ADDR;
}
/* Translate the local device address recursively */
return fdtw_translate_address(dtb, local_bus_node, global_address);
}
/*
* For every CPU node (`/cpus/cpu@n`) in an FDT, execute a callback passing a
* pointer to the FDT and the offset of the CPU node. If the return value of the
* callback is negative, it is treated as an error and the loop is aborted. In
* this situation, the value of the callback is returned from the function.
*
* Returns `0` on success, or a negative integer representing an error code.
*/
int fdtw_for_each_cpu(const void *dtb,
int (*callback)(const void *dtb, int node, uintptr_t mpidr))
{
int ret = 0;
int parent, node = 0;
parent = fdt_path_offset(dtb, "/cpus");
if (parent < 0) {
return parent;
}
fdt_for_each_subnode(node, dtb, parent) {
const char *name;
int len;
uintptr_t mpidr = 0U;
name = fdt_get_name(dtb, node, &len);
if (strncmp(name, "cpu@", 4) != 0) {
continue;
}
ret = fdt_get_reg_props_by_index(dtb, node, 0, &mpidr, NULL);
if (ret < 0) {
break;
}
ret = callback(dtb, node, mpidr);
if (ret < 0) {
break;
}
}
return ret;
}
/*
* Find a given node in device tree. If not present, add it.
* Returns offset of node found/added on success, and < 0 on error.
*/
int fdtw_find_or_add_subnode(void *fdt, int parentoffset, const char *name)
{
int offset;
offset = fdt_subnode_offset(fdt, parentoffset, name);
if (offset == -FDT_ERR_NOTFOUND) {
offset = fdt_add_subnode(fdt, parentoffset, name);
}
if (offset < 0) {
ERROR("%s: %s: %s\n", __func__, name, fdt_strerror(offset));
}
return offset;
}