arm-trusted-firmware/drivers/arm/gic/v3/gicv3_private.h

705 lines
20 KiB
C
Raw Normal View History

/*
* Copyright (c) 2015-2020, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef GICV3_PRIVATE_H
#define GICV3_PRIVATE_H
#include <assert.h>
#include <stdint.h>
#include <drivers/arm/gic_common.h>
#include <drivers/arm/gicv3.h>
#include <lib/mmio.h>
#include "../common/gic_common_private.h"
/*******************************************************************************
* GICv3 private macro definitions
******************************************************************************/
/* Constants to indicate the status of the RWP bit */
#define RWP_TRUE U(1)
#define RWP_FALSE U(0)
/* Calculate GIC register bit number corresponding to its interrupt ID */
#define BIT_NUM(REG, id) \
((id) & ((1U << REG##R_SHIFT) - 1U))
/*
* Calculate 8, 32 and 64-bit GICD register offset
* corresponding to its interrupt ID
*/
#if GIC_EXT_INTID
/* GICv3.1 */
#define GICD_OFFSET_8(REG, id) \
(((id) <= MAX_SPI_ID) ? \
GICD_##REG##R + (uintptr_t)(id) : \
GICD_##REG##RE + (uintptr_t)(id) - MIN_ESPI_ID)
#define GICD_OFFSET(REG, id) \
(((id) <= MAX_SPI_ID) ? \
GICD_##REG##R + (((uintptr_t)(id) >> REG##R_SHIFT) << 2) : \
GICD_##REG##RE + ((((uintptr_t)(id) - MIN_ESPI_ID) >> \
REG##R_SHIFT) << 2))
#define GICD_OFFSET_64(REG, id) \
(((id) <= MAX_SPI_ID) ? \
GICD_##REG##R + (((uintptr_t)(id) >> REG##R_SHIFT) << 3) : \
GICD_##REG##RE + (((uintptr_t)(id) - MIN_ESPI_ID) << 3))
#else /* GICv3 */
#define GICD_OFFSET_8(REG, id) \
(GICD_##REG##R + (uintptr_t)(id))
#define GICD_OFFSET(REG, id) \
(GICD_##REG##R + (((uintptr_t)(id) >> REG##R_SHIFT) << 2))
#define GICD_OFFSET_64(REG, id) \
(GICD_##REG##R + (((uintptr_t)(id) >> REG##R_SHIFT) << 3))
#endif /* GIC_EXT_INTID */
/*
* Read/Write 8, 32 and 64-bit GIC Distributor register
* corresponding to its interrupt ID
*/
#define GICD_READ(REG, base, id) \
mmio_read_32((base) + GICD_OFFSET(REG, (id)))
#define GICD_READ_64(REG, base, id) \
mmio_read_64((base) + GICD_OFFSET_64(REG, (id)))
#define GICD_WRITE_8(REG, base, id, val) \
mmio_write_8((base) + GICD_OFFSET_8(REG, (id)), (val))
#define GICD_WRITE(REG, base, id, val) \
mmio_write_32((base) + GICD_OFFSET(REG, (id)), (val))
#define GICD_WRITE_64(REG, base, id, val) \
mmio_write_64((base) + GICD_OFFSET_64(REG, (id)), (val))
/*
* Bit operations on GIC Distributor register corresponding
* to its interrupt ID
*/
/* Get bit in GIC Distributor register */
#define GICD_GET_BIT(REG, base, id) \
((mmio_read_32((base) + GICD_OFFSET(REG, (id))) >> \
BIT_NUM(REG, (id))) & 1U)
/* Set bit in GIC Distributor register */
#define GICD_SET_BIT(REG, base, id) \
mmio_setbits_32((base) + GICD_OFFSET(REG, (id)), \
((uint32_t)1 << BIT_NUM(REG, (id))))
/* Clear bit in GIC Distributor register */
#define GICD_CLR_BIT(REG, base, id) \
mmio_clrbits_32((base) + GICD_OFFSET(REG, (id)), \
((uint32_t)1 << BIT_NUM(REG, (id))))
/* Write bit in GIC Distributor register */
#define GICD_WRITE_BIT(REG, base, id) \
mmio_write_32((base) + GICD_OFFSET(REG, (id)), \
((uint32_t)1 << BIT_NUM(REG, (id))))
/*
* Calculate 8 and 32-bit GICR register offset
* corresponding to its interrupt ID
*/
#if GIC_EXT_INTID
/* GICv3.1 */
#define GICR_OFFSET_8(REG, id) \
(((id) <= MAX_PPI_ID) ? \
GICR_##REG##R + (uintptr_t)(id) : \
GICR_##REG##R + (uintptr_t)(id) - (MIN_EPPI_ID - MIN_SPI_ID))
#define GICR_OFFSET(REG, id) \
(((id) <= MAX_PPI_ID) ? \
GICR_##REG##R + (((uintptr_t)(id) >> REG##R_SHIFT) << 2) : \
GICR_##REG##R + ((((uintptr_t)(id) - (MIN_EPPI_ID - MIN_SPI_ID))\
>> REG##R_SHIFT) << 2))
#else /* GICv3 */
#define GICR_OFFSET_8(REG, id) \
(GICR_##REG##R + (uintptr_t)(id))
#define GICR_OFFSET(REG, id) \
(GICR_##REG##R + (((uintptr_t)(id) >> REG##R_SHIFT) << 2))
#endif /* GIC_EXT_INTID */
/* Read/Write GIC Redistributor register corresponding to its interrupt ID */
#define GICR_READ(REG, base, id) \
mmio_read_32((base) + GICR_OFFSET(REG, (id)))
#define GICR_WRITE_8(REG, base, id, val) \
mmio_write_8((base) + GICR_OFFSET_8(REG, (id)), (val))
#define GICR_WRITE(REG, base, id, val) \
mmio_write_32((base) + GICR_OFFSET(REG, (id)), (val))
/*
* Bit operations on GIC Redistributor register
* corresponding to its interrupt ID
*/
/* Get bit in GIC Redistributor register */
#define GICR_GET_BIT(REG, base, id) \
((mmio_read_32((base) + GICR_OFFSET(REG, (id))) >> \
BIT_NUM(REG, (id))) & 1U)
/* Write bit in GIC Redistributor register */
#define GICR_WRITE_BIT(REG, base, id) \
mmio_write_32((base) + GICR_OFFSET(REG, (id)), \
((uint32_t)1 << BIT_NUM(REG, (id))))
/* Set bit in GIC Redistributor register */
#define GICR_SET_BIT(REG, base, id) \
mmio_setbits_32((base) + GICR_OFFSET(REG, (id)), \
((uint32_t)1 << BIT_NUM(REG, (id))))
/* Clear bit in GIC Redistributor register */
#define GICR_CLR_BIT(REG, base, id) \
mmio_clrbits_32((base) + GICR_OFFSET(REG, (id)), \
((uint32_t)1 << BIT_NUM(REG, (id))))
/*
* Macro to convert an mpidr to a value suitable for programming into a
* GICD_IROUTER. Bits[31:24] in the MPIDR are cleared as they are not relevant
* to GICv3.
*/
static inline u_register_t gicd_irouter_val_from_mpidr(u_register_t mpidr,
unsigned int irm)
{
return (mpidr & ~(U(0xff) << 24)) |
((irm & IROUTER_IRM_MASK) << IROUTER_IRM_SHIFT);
}
/*
* Macro to convert a GICR_TYPER affinity value into a MPIDR value. Bits[31:24]
* are zeroes.
*/
#ifdef __aarch64__
static inline u_register_t mpidr_from_gicr_typer(uint64_t typer_val)
{
return (((typer_val >> 56) & MPIDR_AFFLVL_MASK) << MPIDR_AFF3_SHIFT) |
((typer_val >> 32) & U(0xffffff));
}
#else
static inline u_register_t mpidr_from_gicr_typer(uint64_t typer_val)
{
return (((typer_val) >> 32) & U(0xffffff));
}
#endif
/*******************************************************************************
* GICv3 private global variables declarations
******************************************************************************/
extern const gicv3_driver_data_t *gicv3_driver_data;
/*******************************************************************************
* Private GICv3 function prototypes for accessing entire registers.
* Note: The raw register values correspond to multiple interrupt IDs and
* the number of interrupt IDs involved depends on the register accessed.
******************************************************************************/
unsigned int gicd_read_igrpmodr(uintptr_t base, unsigned int id);
unsigned int gicr_read_ipriorityr(uintptr_t base, unsigned int id);
void gicd_write_igrpmodr(uintptr_t base, unsigned int id, unsigned int val);
void gicr_write_ipriorityr(uintptr_t base, unsigned int id, unsigned int val);
/*******************************************************************************
* Private GICv3 function prototypes for accessing the GIC registers
* corresponding to a single interrupt ID. These functions use bitwise
* operations or appropriate register accesses to modify or return
* the bit-field corresponding the single interrupt ID.
******************************************************************************/
unsigned int gicd_get_igrpmodr(uintptr_t base, unsigned int id);
unsigned int gicr_get_igrpmodr(uintptr_t base, unsigned int id);
unsigned int gicr_get_igroupr(uintptr_t base, unsigned int id);
unsigned int gicr_get_isactiver(uintptr_t base, unsigned int id);
void gicd_set_igrpmodr(uintptr_t base, unsigned int id);
void gicr_set_igrpmodr(uintptr_t base, unsigned int id);
void gicr_set_isenabler(uintptr_t base, unsigned int id);
void gicr_set_icenabler(uintptr_t base, unsigned int id);
void gicr_set_ispendr(uintptr_t base, unsigned int id);
void gicr_set_icpendr(uintptr_t base, unsigned int id);
void gicr_set_igroupr(uintptr_t base, unsigned int id);
void gicd_clr_igrpmodr(uintptr_t base, unsigned int id);
void gicr_clr_igrpmodr(uintptr_t base, unsigned int id);
void gicr_clr_igroupr(uintptr_t base, unsigned int id);
void gicr_set_ipriorityr(uintptr_t base, unsigned int id, unsigned int pri);
void gicr_set_icfgr(uintptr_t base, unsigned int id, unsigned int cfg);
/*******************************************************************************
* Private GICv3 helper function prototypes
******************************************************************************/
void gicv3_spis_config_defaults(uintptr_t gicd_base);
void gicv3_ppi_sgi_config_defaults(uintptr_t gicr_base);
unsigned int gicv3_secure_ppi_sgi_config_props(uintptr_t gicr_base,
GIC: Allow specifying interrupt properties The GIC driver initialization currently allows an array of interrupts to be configured as secure. Future use cases would require more interrupt configuration other than just security, such as priority. This patch introduces a new interrupt property array as part of both GICv2 and GICv3 driver data. The platform can populate the array with interrupt numbers and respective properties. The corresponding driver initialization iterates through the array, and applies interrupt configuration as required. This capability, and the current way of supplying array (or arrays, in case of GICv3) of secure interrupts, are however mutually exclusive. Henceforth, the platform should supply either: - A list of interrupts to be mapped as secure (the current way). Platforms that do this will continue working as they were. With this patch, this scheme is deprecated. - A list of interrupt properties (properties include interrupt group). Individual interrupt properties are specified via. descriptors of type 'interrupt_prop_desc_t', which can be populated with the macro INTR_PROP_DESC(). A run time assert checks that the platform doesn't specify both. Henceforth the old scheme of providing list of secure interrupts is deprecated. When built with ERROR_DEPRECATED=1, GIC drivers will require that the interrupt properties are supplied instead of an array of secure interrupts. Add a section to firmware design about configuring secure interrupts. Fixes ARM-software/tf-issues#262 Change-Id: I8eec29e72eb69dbb6bce77879febf32c95376942 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
2017-09-22 08:32:09 +01:00
const interrupt_prop_t *interrupt_props,
unsigned int interrupt_props_num);
unsigned int gicv3_secure_spis_config_props(uintptr_t gicd_base,
GIC: Allow specifying interrupt properties The GIC driver initialization currently allows an array of interrupts to be configured as secure. Future use cases would require more interrupt configuration other than just security, such as priority. This patch introduces a new interrupt property array as part of both GICv2 and GICv3 driver data. The platform can populate the array with interrupt numbers and respective properties. The corresponding driver initialization iterates through the array, and applies interrupt configuration as required. This capability, and the current way of supplying array (or arrays, in case of GICv3) of secure interrupts, are however mutually exclusive. Henceforth, the platform should supply either: - A list of interrupts to be mapped as secure (the current way). Platforms that do this will continue working as they were. With this patch, this scheme is deprecated. - A list of interrupt properties (properties include interrupt group). Individual interrupt properties are specified via. descriptors of type 'interrupt_prop_desc_t', which can be populated with the macro INTR_PROP_DESC(). A run time assert checks that the platform doesn't specify both. Henceforth the old scheme of providing list of secure interrupts is deprecated. When built with ERROR_DEPRECATED=1, GIC drivers will require that the interrupt properties are supplied instead of an array of secure interrupts. Add a section to firmware design about configuring secure interrupts. Fixes ARM-software/tf-issues#262 Change-Id: I8eec29e72eb69dbb6bce77879febf32c95376942 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
2017-09-22 08:32:09 +01:00
const interrupt_prop_t *interrupt_props,
unsigned int interrupt_props_num);
void gicv3_rdistif_base_addrs_probe(uintptr_t *rdistif_base_addrs,
unsigned int rdistif_num,
uintptr_t gicr_base,
mpidr_hash_fn mpidr_to_core_pos);
void gicv3_rdistif_mark_core_awake(uintptr_t gicr_base);
void gicv3_rdistif_mark_core_asleep(uintptr_t gicr_base);
/*******************************************************************************
* GIC Distributor interface accessors
******************************************************************************/
/*
* Wait for updates to:
* GICD_CTLR[2:0] - the Group Enables
* GICD_CTLR[7:4] - the ARE bits, E1NWF bit and DS bit
* GICD_ICENABLER<n> - the clearing of enable state for SPIs
*/
static inline void gicd_wait_for_pending_write(uintptr_t gicd_base)
{
while ((gicd_read_ctlr(gicd_base) & GICD_CTLR_RWP_BIT) != 0U) {
}
}
static inline uint32_t gicd_read_pidr2(uintptr_t base)
{
return mmio_read_32(base + GICD_PIDR2_GICV3);
}
static inline uint64_t gicd_read_irouter(uintptr_t base, unsigned int id)
{
assert(id >= MIN_SPI_ID);
return GICD_READ_64(IROUTE, base, id);
}
static inline void gicd_write_irouter(uintptr_t base,
unsigned int id,
uint64_t affinity)
{
assert(id >= MIN_SPI_ID);
GICD_WRITE_64(IROUTE, base, id, affinity);
}
static inline void gicd_clr_ctlr(uintptr_t base,
unsigned int bitmap,
unsigned int rwp)
{
gicd_write_ctlr(base, gicd_read_ctlr(base) & ~bitmap);
if (rwp != 0U) {
gicd_wait_for_pending_write(base);
}
}
static inline void gicd_set_ctlr(uintptr_t base,
unsigned int bitmap,
unsigned int rwp)
{
gicd_write_ctlr(base, gicd_read_ctlr(base) | bitmap);
if (rwp != 0U) {
gicd_wait_for_pending_write(base);
}
}
/*******************************************************************************
* GIC Redistributor interface accessors
******************************************************************************/
static inline uint32_t gicr_read_ctlr(uintptr_t base)
{
return mmio_read_32(base + GICR_CTLR);
}
static inline void gicr_write_ctlr(uintptr_t base, uint32_t val)
{
mmio_write_32(base + GICR_CTLR, val);
}
static inline uint64_t gicr_read_typer(uintptr_t base)
{
return mmio_read_64(base + GICR_TYPER);
}
static inline uint32_t gicr_read_waker(uintptr_t base)
{
return mmio_read_32(base + GICR_WAKER);
}
static inline void gicr_write_waker(uintptr_t base, uint32_t val)
{
mmio_write_32(base + GICR_WAKER, val);
}
/*
* Wait for updates to:
* GICR_ICENABLER0
* GICR_CTLR.DPG1S
* GICR_CTLR.DPG1NS
* GICR_CTLR.DPG0
* GICR_CTLR, which clears EnableLPIs from 1 to 0
*/
static inline void gicr_wait_for_pending_write(uintptr_t gicr_base)
{
while ((gicr_read_ctlr(gicr_base) & GICR_CTLR_RWP_BIT) != 0U) {
}
}
static inline void gicr_wait_for_upstream_pending_write(uintptr_t gicr_base)
{
while ((gicr_read_ctlr(gicr_base) & GICR_CTLR_UWP_BIT) != 0U) {
}
}
/* Private implementation of Distributor power control hooks */
void arm_gicv3_distif_pre_save(unsigned int rdist_proc_num);
void arm_gicv3_distif_post_restore(unsigned int rdist_proc_num);
/*******************************************************************************
* GIC Redistributor functions for accessing entire registers.
* Note: The raw register values correspond to multiple interrupt IDs and
* the number of interrupt IDs involved depends on the register accessed.
******************************************************************************/
/*
* Accessors to read/write GIC Redistributor ICENABLER0 register
*/
static inline unsigned int gicr_read_icenabler0(uintptr_t base)
{
return mmio_read_32(base + GICR_ICENABLER0);
}
static inline void gicr_write_icenabler0(uintptr_t base, unsigned int val)
{
mmio_write_32(base + GICR_ICENABLER0, val);
}
/*
* Accessors to read/write GIC Redistributor ICENABLER0 and ICENABLERE
* register corresponding to its number
*/
static inline unsigned int gicr_read_icenabler(uintptr_t base,
unsigned int reg_num)
{
return mmio_read_32(base + GICR_ICENABLER + (reg_num << 2));
}
static inline void gicr_write_icenabler(uintptr_t base, unsigned int reg_num,
unsigned int val)
{
mmio_write_32(base + GICR_ICENABLER + (reg_num << 2), val);
}
/*
* Accessors to read/write GIC Redistributor ICFGR0, ICFGR1 registers
*/
static inline unsigned int gicr_read_icfgr0(uintptr_t base)
{
return mmio_read_32(base + GICR_ICFGR0);
}
static inline unsigned int gicr_read_icfgr1(uintptr_t base)
{
return mmio_read_32(base + GICR_ICFGR1);
}
static inline void gicr_write_icfgr0(uintptr_t base, unsigned int val)
{
mmio_write_32(base + GICR_ICFGR0, val);
}
static inline void gicr_write_icfgr1(uintptr_t base, unsigned int val)
{
mmio_write_32(base + GICR_ICFGR1, val);
}
/*
* Accessors to read/write GIC Redistributor ICFGR0, ICFGR1 and ICFGRE
* register corresponding to its number
*/
static inline unsigned int gicr_read_icfgr(uintptr_t base, unsigned int reg_num)
{
return mmio_read_32(base + GICR_ICFGR + (reg_num << 2));
}
static inline void gicr_write_icfgr(uintptr_t base, unsigned int reg_num,
unsigned int val)
{
mmio_write_32(base + GICR_ICFGR + (reg_num << 2), val);
}
/*
* Accessor to write GIC Redistributor ICPENDR0 register
*/
static inline void gicr_write_icpendr0(uintptr_t base, unsigned int val)
{
mmio_write_32(base + GICR_ICPENDR0, val);
}
/*
* Accessor to write GIC Redistributor ICPENDR0 and ICPENDRE
* register corresponding to its number
*/
static inline void gicr_write_icpendr(uintptr_t base, unsigned int reg_num,
unsigned int val)
{
mmio_write_32(base + GICR_ICPENDR + (reg_num << 2), val);
}
/*
* Accessors to read/write GIC Redistributor IGROUPR0 register
*/
static inline unsigned int gicr_read_igroupr0(uintptr_t base)
{
return mmio_read_32(base + GICR_IGROUPR0);
}
static inline void gicr_write_igroupr0(uintptr_t base, unsigned int val)
{
mmio_write_32(base + GICR_IGROUPR0, val);
}
/*
* Accessors to read/write GIC Redistributor IGROUPR0 and IGROUPRE
* register corresponding to its number
*/
static inline unsigned int gicr_read_igroupr(uintptr_t base,
unsigned int reg_num)
{
return mmio_read_32(base + GICR_IGROUPR + (reg_num << 2));
}
static inline void gicr_write_igroupr(uintptr_t base, unsigned int reg_num,
unsigned int val)
{
mmio_write_32(base + GICR_IGROUPR + (reg_num << 2), val);
}
/*
* Accessors to read/write GIC Redistributor IGRPMODR0 register
*/
static inline unsigned int gicr_read_igrpmodr0(uintptr_t base)
{
return mmio_read_32(base + GICR_IGRPMODR0);
}
static inline void gicr_write_igrpmodr0(uintptr_t base, unsigned int val)
{
mmio_write_32(base + GICR_IGRPMODR0, val);
}
/*
* Accessors to read/write GIC Redistributor IGRPMODR0 and IGRPMODRE
* register corresponding to its number
*/
static inline unsigned int gicr_read_igrpmodr(uintptr_t base,
unsigned int reg_num)
{
return mmio_read_32(base + GICR_IGRPMODR + (reg_num << 2));
}
static inline void gicr_write_igrpmodr(uintptr_t base, unsigned int reg_num,
unsigned int val)
{
mmio_write_32(base + GICR_IGRPMODR + (reg_num << 2), val);
}
/*
* Accessors to read/write the GIC Redistributor IPRIORITYR(E) register
* corresponding to its number, 4 interrupts IDs at a time.
*/
static inline unsigned int gicr_ipriorityr_read(uintptr_t base,
unsigned int reg_num)
{
return mmio_read_32(base + GICR_IPRIORITYR + (reg_num << 2));
}
static inline void gicr_ipriorityr_write(uintptr_t base, unsigned int reg_num,
unsigned int val)
{
mmio_write_32(base + GICR_IPRIORITYR + (reg_num << 2), val);
}
/*
* Accessors to read/write GIC Redistributor ISACTIVER0 register
*/
static inline unsigned int gicr_read_isactiver0(uintptr_t base)
{
return mmio_read_32(base + GICR_ISACTIVER0);
}
static inline void gicr_write_isactiver0(uintptr_t base, unsigned int val)
{
mmio_write_32(base + GICR_ISACTIVER0, val);
}
/*
* Accessors to read/write GIC Redistributor ISACTIVER0 and ISACTIVERE
* register corresponding to its number
*/
static inline unsigned int gicr_read_isactiver(uintptr_t base,
unsigned int reg_num)
{
return mmio_read_32(base + GICR_ISACTIVER + (reg_num << 2));
}
static inline void gicr_write_isactiver(uintptr_t base, unsigned int reg_num,
unsigned int val)
{
mmio_write_32(base + GICR_ISACTIVER + (reg_num << 2), val);
}
/*
* Accessors to read/write GIC Redistributor ISENABLER0 register
*/
static inline unsigned int gicr_read_isenabler0(uintptr_t base)
{
return mmio_read_32(base + GICR_ISENABLER0);
}
static inline void gicr_write_isenabler0(uintptr_t base, unsigned int val)
{
mmio_write_32(base + GICR_ISENABLER0, val);
}
/*
* Accessors to read/write GIC Redistributor ISENABLER0 and ISENABLERE
* register corresponding to its number
*/
static inline unsigned int gicr_read_isenabler(uintptr_t base,
unsigned int reg_num)
{
return mmio_read_32(base + GICR_ISENABLER + (reg_num << 2));
}
static inline void gicr_write_isenabler(uintptr_t base, unsigned int reg_num,
unsigned int val)
{
mmio_write_32(base + GICR_ISENABLER + (reg_num << 2), val);
}
/*
* Accessors to read/write GIC Redistributor ISPENDR0 register
*/
static inline unsigned int gicr_read_ispendr0(uintptr_t base)
{
return mmio_read_32(base + GICR_ISPENDR0);
}
static inline void gicr_write_ispendr0(uintptr_t base, unsigned int val)
{
mmio_write_32(base + GICR_ISPENDR0, val);
}
/*
* Accessors to read/write GIC Redistributor ISPENDR0 and ISPENDRE
* register corresponding to its number
*/
static inline unsigned int gicr_read_ispendr(uintptr_t base,
unsigned int reg_num)
{
return mmio_read_32(base + GICR_ISPENDR + (reg_num << 2));
}
static inline void gicr_write_ispendr(uintptr_t base, unsigned int reg_num,
unsigned int val)
{
mmio_write_32(base + GICR_ISPENDR + (reg_num << 2), val);
}
/*
* Accessors to read/write GIC Redistributor NSACR register
*/
static inline unsigned int gicr_read_nsacr(uintptr_t base)
{
return mmio_read_32(base + GICR_NSACR);
}
static inline void gicr_write_nsacr(uintptr_t base, unsigned int val)
{
mmio_write_32(base + GICR_NSACR, val);
}
/*
* Accessors to read/write GIC Redistributor PROPBASER register
*/
static inline uint64_t gicr_read_propbaser(uintptr_t base)
{
return mmio_read_64(base + GICR_PROPBASER);
}
static inline void gicr_write_propbaser(uintptr_t base, uint64_t val)
{
mmio_write_64(base + GICR_PROPBASER, val);
}
/*
* Accessors to read/write GIC Redistributor PENDBASER register
*/
static inline uint64_t gicr_read_pendbaser(uintptr_t base)
{
return mmio_read_64(base + GICR_PENDBASER);
}
static inline void gicr_write_pendbaser(uintptr_t base, uint64_t val)
{
mmio_write_64(base + GICR_PENDBASER, val);
}
/*******************************************************************************
* GIC ITS functions to read and write entire ITS registers.
******************************************************************************/
static inline uint32_t gits_read_ctlr(uintptr_t base)
{
return mmio_read_32(base + GITS_CTLR);
}
static inline void gits_write_ctlr(uintptr_t base, uint32_t val)
{
mmio_write_32(base + GITS_CTLR, val);
}
static inline uint64_t gits_read_cbaser(uintptr_t base)
{
return mmio_read_64(base + GITS_CBASER);
}
static inline void gits_write_cbaser(uintptr_t base, uint64_t val)
{
mmio_write_64(base + GITS_CBASER, val);
}
static inline uint64_t gits_read_cwriter(uintptr_t base)
{
return mmio_read_64(base + GITS_CWRITER);
}
static inline void gits_write_cwriter(uintptr_t base, uint64_t val)
{
mmio_write_64(base + GITS_CWRITER, val);
}
static inline uint64_t gits_read_baser(uintptr_t base,
unsigned int its_table_id)
{
assert(its_table_id < 8U);
return mmio_read_64(base + GITS_BASER + (8U * its_table_id));
}
static inline void gits_write_baser(uintptr_t base, unsigned int its_table_id,
uint64_t val)
{
assert(its_table_id < 8U);
mmio_write_64(base + GITS_BASER + (8U * its_table_id), val);
}
/*
* Wait for Quiescent bit when GIC ITS is disabled
*/
static inline void gits_wait_for_quiescent_bit(uintptr_t gits_base)
{
assert((gits_read_ctlr(gits_base) & GITS_CTLR_ENABLED_BIT) == 0U);
while ((gits_read_ctlr(gits_base) & GITS_CTLR_QUIESCENT_BIT) == 0U) {
}
}
#endif /* GICV3_PRIVATE_H */