arm-trusted-firmware/include/lib/xlat_tables/aarch64/xlat_tables_aarch64.h

78 lines
2.7 KiB
C
Raw Normal View History

xlat lib: Reorganize architectural defs Move the header files that provide translation tables architectural definitions from the library v2 source files to the library include directory. This allows to share these definitions between both versions (v1 and v2) of the library. Create a new header file that includes the AArch32 or AArch64 definitions based on the AARCH32 build flag, so that the library user doesn't have to worry about handling it on their side. Also repurpose some of the definitions the header files provide to concentrate on the things that differ between AArch32 and AArch64. As a result they now contain the following information: - the first table level that allows block descriptors; - the architectural limits of the virtual address space; - the initial lookup level to cover the entire address space. Additionally, move the XLAT_TABLE_LEVEL_MIN macro from xlat_tables_defs.h to the AArch32/AArch64 architectural definitions. This new organisation eliminates duplicated information in the AArch32 and AArch64 versions. It also decouples these architectural files from any platform-specific information. Previously, they were dependent on the address space size, which is platform-specific. Finally, for the v2 of the library, move the compatibility code for ADDR_SPACE_SIZE into a C file as it is not needed outside of this file. For v1, this code hasn't been changed and stays in a header file because it's needed by several files. Change-Id: If746c684acd80eebf918abd3ab6e8481d004ac68 Signed-off-by: Sandrine Bailleux <sandrine.bailleux@arm.com>
2017-05-19 09:59:37 +01:00
/*
* Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef __XLAT_TABLES_AARCH64_H__
#define __XLAT_TABLES_AARCH64_H__
#include <arch.h>
#include <utils_def.h>
#include <xlat_tables_defs.h>
#if !defined(PAGE_SIZE)
#error "PAGE_SIZE is not defined."
#endif
/*
* In AArch64 state, the MMU may support 4 KB, 16 KB and 64 KB page
* granularity. For 4KB granularity, a level 0 table descriptor doesn't support
* block translation. For 16KB, the same thing happens to levels 0 and 1. For
* 64KB, same for level 1. See section D4.3.1 of the ARMv8-A Architecture
* Reference Manual (DDI 0487A.k) for more information.
*
* The define below specifies the first table level that allows block
* descriptors.
*/
#if PAGE_SIZE == (4 * 1024)
# define MIN_LVL_BLOCK_DESC 1
#elif PAGE_SIZE == (16 * 1024) || PAGE_SIZE == (64 * 1024)
# define MIN_LVL_BLOCK_DESC 2
#endif
#define XLAT_TABLE_LEVEL_MIN U(0)
/*
* Define the architectural limits of the virtual address space in AArch64
* state.
*
* TCR.TxSZ is calculated as 64 minus the width of said address space.
* The value of TCR.TxSZ must be in the range 16 to 39 [1], which means that
* the virtual address space width must be in the range 48 to 25 bits.
*
* [1] See the ARMv8-A Architecture Reference Manual (DDI 0487A.j) for more
* information:
* Page 1730: 'Input address size', 'For all translation stages'.
*/
#define MIN_VIRT_ADDR_SPACE_SIZE (1 << (64 - TCR_TxSZ_MAX))
#define MAX_VIRT_ADDR_SPACE_SIZE (ULL(1) << (64 - TCR_TxSZ_MIN))
/*
* Here we calculate the initial lookup level from the value of the given
* virtual address space size. For a 4 KB page size,
* - level 0 supports virtual address spaces of widths 48 to 40 bits;
* - level 1 from 39 to 31;
* - level 2 from 30 to 25.
*
* Wider or narrower address spaces are not supported. As a result, level 3
* cannot be used as initial lookup level with 4 KB granularity. See section
* D4.2.5 in the ARMv8-A Architecture Reference Manual (DDI 0487A.j) for more
* information.
*
* For example, for a 35-bit address space (i.e. virt_addr_space_size ==
* 1 << 35), TCR.TxSZ will be programmed to (64 - 35) = 29. According to Table
* D4-11 in the ARM ARM, the initial lookup level for an address space like that
* is 1.
*
* Note that this macro assumes that the given virtual address space size is
* valid. Therefore, the caller is expected to check it is the case using the
* CHECK_VIRT_ADDR_SPACE_SIZE() macro first.
*/
#define GET_XLAT_TABLE_LEVEL_BASE(virt_addr_space_size) \
(((virt_addr_space_size) > (ULL(1) << L0_XLAT_ADDRESS_SHIFT)) \
? 0 \
: (((virt_addr_space_size) > (1 << L1_XLAT_ADDRESS_SHIFT)) ? 1 : 2))
#endif /* __XLAT_TABLES_AARCH64_H__ */