arm-trusted-firmware/bl2u/bl2u.ld.S

153 lines
4.5 KiB
ArmAsm
Raw Normal View History

/*
* Copyright (c) 2015, ARM Limited and Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <platform_def.h>
OUTPUT_FORMAT(PLATFORM_LINKER_FORMAT)
OUTPUT_ARCH(PLATFORM_LINKER_ARCH)
ENTRY(bl2u_entrypoint)
MEMORY {
RAM (rwx): ORIGIN = BL2U_BASE, LENGTH = BL2U_LIMIT - BL2U_BASE
}
SECTIONS
{
. = BL2U_BASE;
ASSERT(. == ALIGN(4096),
"BL2U_BASE address is not aligned on a page boundary.")
Introduce SEPARATE_CODE_AND_RODATA build flag At the moment, all BL images share a similar memory layout: they start with their code section, followed by their read-only data section. The two sections are contiguous in memory. Therefore, the end of the code section and the beginning of the read-only data one might share a memory page. This forces both to be mapped with the same memory attributes. As the code needs to be executable, this means that the read-only data stored on the same memory page as the code are executable as well. This could potentially be exploited as part of a security attack. This patch introduces a new build flag called SEPARATE_CODE_AND_RODATA, which isolates the code and read-only data on separate memory pages. This in turn allows independent control of the access permissions for the code and read-only data. This has an impact on memory footprint, as padding bytes need to be introduced between the code and read-only data to ensure the segragation of the two. To limit the memory cost, the memory layout of the read-only section has been changed in this case. - When SEPARATE_CODE_AND_RODATA=0, the layout is unchanged, i.e. the read-only section still looks like this (padding omitted): | ... | +-------------------+ | Exception vectors | +-------------------+ | Read-only data | +-------------------+ | Code | +-------------------+ BLx_BASE In this case, the linker script provides the limits of the whole read-only section. - When SEPARATE_CODE_AND_RODATA=1, the exception vectors and read-only data are swapped, such that the code and exception vectors are contiguous, followed by the read-only data. This gives the following new layout (padding omitted): | ... | +-------------------+ | Read-only data | +-------------------+ | Exception vectors | +-------------------+ | Code | +-------------------+ BLx_BASE In this case, the linker script now exports 2 sets of addresses instead: the limits of the code and the limits of the read-only data. Refer to the Firmware Design guide for more details. This provides platform code with a finer-grained view of the image layout and allows it to map these 2 regions with the appropriate access permissions. Note that SEPARATE_CODE_AND_RODATA applies to all BL images. Change-Id: I936cf80164f6b66b6ad52b8edacadc532c935a49
2016-07-08 14:37:40 +01:00
#if SEPARATE_CODE_AND_RODATA
.text . : {
__TEXT_START__ = .;
*bl2u_entrypoint.o(.text*)
*(.text*)
*(.vectors)
. = NEXT(4096);
__TEXT_END__ = .;
} >RAM
.rodata . : {
__RODATA_START__ = .;
*(.rodata*)
. = NEXT(4096);
__RODATA_END__ = .;
} >RAM
#else
ro . : {
__RO_START__ = .;
*bl2u_entrypoint.o(.text*)
*(.text*)
*(.rodata*)
*(.vectors)
__RO_END_UNALIGNED__ = .;
/*
* Memory page(s) mapped to this section will be marked as
* read-only, executable. No RW data from the next section must
* creep in. Ensure the rest of the current memory page is unused.
*/
. = NEXT(4096);
__RO_END__ = .;
} >RAM
Introduce SEPARATE_CODE_AND_RODATA build flag At the moment, all BL images share a similar memory layout: they start with their code section, followed by their read-only data section. The two sections are contiguous in memory. Therefore, the end of the code section and the beginning of the read-only data one might share a memory page. This forces both to be mapped with the same memory attributes. As the code needs to be executable, this means that the read-only data stored on the same memory page as the code are executable as well. This could potentially be exploited as part of a security attack. This patch introduces a new build flag called SEPARATE_CODE_AND_RODATA, which isolates the code and read-only data on separate memory pages. This in turn allows independent control of the access permissions for the code and read-only data. This has an impact on memory footprint, as padding bytes need to be introduced between the code and read-only data to ensure the segragation of the two. To limit the memory cost, the memory layout of the read-only section has been changed in this case. - When SEPARATE_CODE_AND_RODATA=0, the layout is unchanged, i.e. the read-only section still looks like this (padding omitted): | ... | +-------------------+ | Exception vectors | +-------------------+ | Read-only data | +-------------------+ | Code | +-------------------+ BLx_BASE In this case, the linker script provides the limits of the whole read-only section. - When SEPARATE_CODE_AND_RODATA=1, the exception vectors and read-only data are swapped, such that the code and exception vectors are contiguous, followed by the read-only data. This gives the following new layout (padding omitted): | ... | +-------------------+ | Read-only data | +-------------------+ | Exception vectors | +-------------------+ | Code | +-------------------+ BLx_BASE In this case, the linker script now exports 2 sets of addresses instead: the limits of the code and the limits of the read-only data. Refer to the Firmware Design guide for more details. This provides platform code with a finer-grained view of the image layout and allows it to map these 2 regions with the appropriate access permissions. Note that SEPARATE_CODE_AND_RODATA applies to all BL images. Change-Id: I936cf80164f6b66b6ad52b8edacadc532c935a49
2016-07-08 14:37:40 +01:00
#endif
/*
* Define a linker symbol to mark start of the RW memory area for this
* image.
*/
__RW_START__ = . ;
.data . : {
__DATA_START__ = .;
*(.data*)
__DATA_END__ = .;
} >RAM
stacks (NOLOAD) : {
__STACKS_START__ = .;
*(tzfw_normal_stacks)
__STACKS_END__ = .;
} >RAM
/*
* The .bss section gets initialised to 0 at runtime.
* Its base address must be 16-byte aligned.
*/
.bss : ALIGN(16) {
__BSS_START__ = .;
*(SORT_BY_ALIGNMENT(.bss*))
*(COMMON)
__BSS_END__ = .;
} >RAM
/*
* The xlat_table section is for full, aligned page tables (4K).
* Removing them from .bss avoids forcing 4K alignment on
* the .bss section and eliminates the unecessary zero init
*/
xlat_table (NOLOAD) : {
*(xlat_table)
} >RAM
#if USE_COHERENT_MEM
/*
* The base address of the coherent memory section must be page-aligned (4K)
* to guarantee that the coherent data are stored on their own pages and
* are not mixed with normal data. This is required to set up the correct
* memory attributes for the coherent data page tables.
*/
coherent_ram (NOLOAD) : ALIGN(4096) {
__COHERENT_RAM_START__ = .;
*(tzfw_coherent_mem)
__COHERENT_RAM_END_UNALIGNED__ = .;
/*
* Memory page(s) mapped to this section will be marked
* as device memory. No other unexpected data must creep in.
* Ensure the rest of the current memory page is unused.
*/
. = NEXT(4096);
__COHERENT_RAM_END__ = .;
} >RAM
#endif
/*
* Define a linker symbol to mark end of the RW memory area for this
* image.
*/
__RW_END__ = .;
__BL2U_END__ = .;
__BSS_SIZE__ = SIZEOF(.bss);
ASSERT(. <= BL2U_LIMIT, "BL2U image has exceeded its limit.")
}