nxp: add flexspi driver support

Flexspi driver now introduces read/write/erase APIs for complete flash
size, FAST-READ are by default used and IP bus is used for erase, read
and write using flexspi APIs.

Framework layer is currently embedded in driver itself using flash_info
defines.

Test cases are also added to confirm flash functionality currently under
DEBUG flag.

Signed-off-by: Pankaj Gupta <pankaj.gupta@nxp.com>
Signed-off-by: Ashish Kumar <Ashish.Kumar@nxp.com>
Signed-off-by: Kuldeep Singh <kuldeep.singh@nxp.com>
Change-Id: I755c0f763f6297a35cad6885f84640de50f51bb0
This commit is contained in:
Kuldeep Singh 2020-12-09 14:02:39 +05:30 committed by Pankaj Gupta
parent b53334dac4
commit b525a8f0d2
9 changed files with 1615 additions and 0 deletions

View File

@ -0,0 +1,25 @@
/*
* Copyright 2020 NXP
*
* SPDX-License-Identifier: BSD-3-Clause
*
*/
#include <assert.h>
#include <fspi_api.h>
#include <lib/mmio.h>
#include <lib/xlat_tables/xlat_tables_v2.h>
int flexspi_nor_io_setup(uintptr_t nxp_flexspi_flash_addr,
size_t nxp_flexspi_flash_size, uint32_t fspi_base_reg_addr)
{
int ret = 0;
ret = fspi_init(fspi_base_reg_addr, nxp_flexspi_flash_addr);
/* Adding NOR Memory Map in XLAT Table */
mmap_add_region(nxp_flexspi_flash_addr, nxp_flexspi_flash_addr,
nxp_flexspi_flash_size, MT_MEMORY | MT_RW);
return ret;
}

View File

@ -0,0 +1,15 @@
/*
* Copyright 2020 NXP
*
* SPDX-License-Identifier: BSD-3-Clause
*
*/
#ifndef FLEXSPI_NOR_H
#define FLEXSPI_NOR_H
int flexspi_nor_io_setup(uintptr_t nxp_flexspi_flash_addr,
size_t nxp_flexspi_flash_size,
uint32_t fspi_base_reg_addr);
#endif /* FLEXSPI_NOR_H */

View File

@ -0,0 +1,35 @@
#
# Copyright 2020 NXP
#
# SPDX-License-Identifier: BSD-3-Clause
#
ifeq (${XSPI_NOR},)
XSPI_NOR := 1
FLEXSPI_DRIVERS_PATH := ${PLAT_DRIVERS_PATH}/flexspi/nor
PLAT_XSPI_INCLUDES += -I$(FLEXSPI_DRIVERS_PATH)
XSPI_BOOT_SOURCES += $(FLEXSPI_DRIVERS_PATH)/flexspi_nor.c \
${FLEXSPI_DRIVERS_PATH}/fspi.c
ifeq ($(DEBUG),1)
XSPI_BOOT_SOURCES += ${FLEXSPI_DRIVERS_PATH}/test_fspi.c
endif
PLAT_XSPI_INCLUDES += -Iinclude/drivers/nxp/flexspi
PLAT_INCLUDES += ${PLAT_XSPI_INCLUDES}
ifeq (${BL_COMM_XSPI_NEEDED},yes)
BL_COMMON_SOURCES += ${XSPI_BOOT_SOURCES}
else
ifeq (${BL2_XSPI_NEEDED},yes)
BL2_SOURCES += ${XSPI_BOOT_SOURCES}
endif
ifeq (${BL31_XSPI_NEEDED},yes)
BL31_SOURCES += ${XSPI_BOOT_SOURCES}
endif
endif
endif

View File

@ -0,0 +1,853 @@
// SPDX-License-Identifier: BSD-3-Clause
/*
* NXP FlexSpi Controller Driver.
* Copyright 2021 NXP
*
*/
#include <endian.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <common/debug.h>
#include <flash_info.h>
#include "fspi.h"
#include <fspi_api.h>
#include <xspi_error_codes.h>
#ifdef DEBUG_FLEXSPI
#define PR printf("In [%s][%d]\n", __func__, __LINE__)
#define PRA(a, b) printf("In [%s][%d] %s="a"\n", __func__, __LINE__, #b, b)
#else
#define PR
#define PRA(a, b)
#endif
/*
* This errata is valid for all NXP SoC.
*/
#define ERRATA_FLASH_A050272 1
static uintptr_t fspi_base_reg_addr;
static uintptr_t fspi_flash_base_addr;
static void fspi_RDSR(uint32_t *, const void *, uint32_t);
static void fspi_writel(uint32_t x_addr, uint32_t x_val)
{
fspi_out32((uint32_t *)(fspi_base_reg_addr + x_addr),
(uint32_t) x_val);
}
static uint32_t fspi_readl(uint32_t x_addr)
{
return fspi_in32((uint32_t *)(fspi_base_reg_addr + x_addr));
}
static void fspi_MDIS(uint8_t x_disable)
{
uint32_t ui_reg;
ui_reg = fspi_readl(FSPI_MCR0);
if (x_disable != 0U) {
ui_reg |= FSPI_MCR0_MDIS;
} else {
ui_reg &= (uint32_t) (~FSPI_MCR0_MDIS);
}
fspi_writel(FSPI_MCR0, ui_reg);
}
static void fspi_lock_LUT(void)
{
fspi_writel(FSPI_LUTKEY, FSPI_LUTKEY_VALUE);
VERBOSE("%s 0x%x\n", __func__, fspi_readl(FSPI_LCKCR));
fspi_writel(FSPI_LCKCR, FSPI_LCKER_LOCK);
VERBOSE("%s 0x%x\n", __func__, fspi_readl(FSPI_LCKCR));
}
static void fspi_unlock_LUT(void)
{
fspi_writel(FSPI_LUTKEY, FSPI_LUTKEY_VALUE);
VERBOSE("%s 0x%x\n", __func__, fspi_readl(FSPI_LCKCR));
fspi_writel(FSPI_LCKCR, FSPI_LCKER_UNLOCK);
VERBOSE("%s 0x%x\n", __func__, fspi_readl(FSPI_LCKCR));
}
static void fspi_op_setup(uint32_t fspi_op_seq_id, bool ignore_flash_sz)
{
uint32_t x_addr, x_instr0 = 0, x_instr1 = 0, x_instr2 = 0;
uint32_t cmd_id1, cmd_id2;
VERBOSE("In func %s\n", __func__);
switch (fspi_op_seq_id) {
case FSPI_READ_SEQ_ID:
cmd_id1 = FSPI_NOR_CMD_READ;
cmd_id2 = FSPI_NOR_CMD_READ_4B;
x_instr2 = FSPI_INSTR_OPRND0(0) | FSPI_INSTR_PAD0(FSPI_LUT_PAD1)
| FSPI_INSTR_OPCODE0(FSPI_LUT_READ);
break;
case FSPI_FASTREAD_SEQ_ID:
cmd_id1 = FSPI_NOR_CMD_FASTREAD;
cmd_id2 = FSPI_NOR_CMD_FASTREAD_4B;
x_instr2 = FSPI_INSTR_OPRND0(8) | FSPI_INSTR_PAD0(FSPI_LUT_PAD1)
| FSPI_INSTR_OPCODE0(FSPI_DUMMY_SDR)
| FSPI_INSTR_OPRND1(0)
| FSPI_INSTR_PAD1(FSPI_LUT_PAD1)
| FSPI_INSTR_OPCODE1(FSPI_LUT_READ);
break;
case FSPI_WRITE_SEQ_ID:
cmd_id1 = FSPI_NOR_CMD_PP;
cmd_id2 = FSPI_NOR_CMD_PP_4B;
x_instr2 = FSPI_INSTR_OPRND0(0) | FSPI_INSTR_PAD0(FSPI_LUT_PAD1)
| FSPI_INSTR_OPCODE0(FSPI_LUT_WRITE);
break;
case FSPI_WREN_SEQ_ID:
cmd_id1 = FSPI_NOR_CMD_WREN;
cmd_id2 = FSPI_NOR_CMD_WREN;
break;
case FSPI_SE_SEQ_ID:
cmd_id1 = FSPI_NOR_CMD_SE_64K;
cmd_id2 = FSPI_NOR_CMD_SE_64K_4B;
break;
case FSPI_4K_SEQ_ID:
cmd_id1 = FSPI_NOR_CMD_SE_4K;
cmd_id2 = FSPI_NOR_CMD_SE_4K_4B;
break;
case FSPI_BE_SEQ_ID:
cmd_id1 = FSPI_NOR_CMD_BE;
cmd_id2 = FSPI_NOR_CMD_BE;
break;
case FSPI_RDSR_SEQ_ID:
cmd_id1 = FSPI_NOR_CMD_RDSR;
cmd_id2 = FSPI_NOR_CMD_RDSR;
break;
}
x_addr = FSPI_LUTREG_OFFSET + (uint32_t)(0x10 * fspi_op_seq_id);
if ((F_FLASH_SIZE_BYTES <= SZ_16M_BYTES) || (ignore_flash_sz)) {
x_instr0 = FSPI_INSTR_OPRND0(cmd_id1);
x_instr1 = FSPI_INSTR_OPRND1(FSPI_LUT_ADDR24BIT);
VERBOSE("CMD_ID = %x offset = 0x%x\n", cmd_id1, x_addr);
} else {
x_instr0 = FSPI_INSTR_OPRND0(cmd_id2);
x_instr1 = FSPI_INSTR_OPRND1(FSPI_LUT_ADDR32BIT);
VERBOSE("CMD_ID = %x offset = 0x%x\n", cmd_id2, x_addr);
}
x_instr0 |= FSPI_INSTR_PAD0(FSPI_LUT_PAD1)
| FSPI_INSTR_OPCODE0(FSPI_LUT_CMD);
x_instr1 |= FSPI_INSTR_PAD1(FSPI_LUT_PAD1)
| FSPI_INSTR_OPCODE1(FSPI_LUT_ADDR);
if (fspi_op_seq_id == FSPI_RDSR_SEQ_ID) {
x_instr0 |= FSPI_INSTR_OPRND1(1) | FSPI_INSTR_PAD1(FSPI_LUT_PAD1)
| FSPI_INSTR_OPCODE1(FSPI_LUT_READ);
} else if ((fspi_op_seq_id != FSPI_BE_SEQ_ID)
&& (fspi_op_seq_id != FSPI_WREN_SEQ_ID)) {
x_instr0 |= x_instr1;
}
fspi_writel((x_addr), x_instr0);
fspi_writel((x_addr + U(0x4)), x_instr2);
fspi_writel((x_addr + U(0x8)), (uint32_t) 0x0); /* STOP command */
fspi_writel((x_addr + U(0xc)), (uint32_t) 0x0); /* STOP command */
}
static void fspi_setup_LUT(void)
{
VERBOSE("In func %s\n", __func__);
fspi_unlock_LUT();
/* LUT Setup for READ Command 3-Byte low Frequency */
fspi_op_setup(FSPI_READ_SEQ_ID, false);
/* LUT Setup for FAST READ Command 3-Byte/4-Byte high Frequency */
fspi_op_setup(FSPI_FASTREAD_SEQ_ID, false);
/* LUT Setup for Page Program */
fspi_op_setup(FSPI_WRITE_SEQ_ID, false);
/* LUT Setup for WREN */
fspi_op_setup(FSPI_WREN_SEQ_ID, true);
/* LUT Setup for Sector_Erase */
fspi_op_setup(FSPI_SE_SEQ_ID, false);
/* LUT Setup for Sub Sector 4K Erase */
fspi_op_setup(FSPI_4K_SEQ_ID, false);
/* LUT Setup for Bulk_Erase */
fspi_op_setup(FSPI_BE_SEQ_ID, true);
/* Read Status */
fspi_op_setup(FSPI_RDSR_SEQ_ID, true);
fspi_lock_LUT();
}
static inline void fspi_ahb_invalidate(void)
{
uint32_t reg;
VERBOSE("In func %s %d\n", __func__, __LINE__);
reg = fspi_readl(FSPI_MCR0);
reg |= FSPI_MCR0_SWRST;
fspi_writel(FSPI_MCR0, reg);
while ((fspi_readl(FSPI_MCR0) & FSPI_MCR0_SWRST) != 0)
; /* FSPI_MCR0_SWRESET_MASK */
VERBOSE("In func %s %d\n", __func__, __LINE__);
}
#if defined(CONFIG_FSPI_AHB)
static void fspi_init_ahb(void)
{
uint32_t i, x_flash_cr2, seq_id;
x_flash_cr2 = 0;
/* Reset AHB RX buffer CR configuration */
for (i = 0; i < 8; i++) {
fspi_writel((FSPI_AHBRX_BUF0CR0 + 4 * i), 0U);
}
/* Set ADATSZ with the maximum AHB buffer size */
fspi_writel(FSPI_AHBRX_BUF7CR0,
((uint32_t) ((FSPI_RX_MAX_AHBBUF_SIZE / 8U) |
FSPI_AHBRXBUF0CR7_PREF)));
/* Known limitation handling: prefetch and
* no start address alignment.*/
fspi_writel(FSPI_AHBCR, FSPI_AHBCR_PREF_EN);
INFO("xAhbcr=0x%x\n", fspi_readl(FSPI_AHBCR));
// Setup AHB READ sequenceID for all flashes.
x_flash_cr2 = fspi_readl(FSPI_FLSHA1CR2);
INFO("x_flash_cr2=0x%x\n", x_flash_cr2);
seq_id = CONFIG_FSPI_FASTREAD ?
FSPI_FASTREAD_SEQ_ID : FSPI_READ_SEQ_ID;
x_flash_cr2 |= ((seq_id << FSPI_FLSHXCR2_ARDSEQI_SHIFT) & 0x1f);
INFO("x_flash_cr2=0x%x\n", x_flash_cr2);
fspi_writel(FSPI_FLSHA1CR2, x_flash_cr2);
x_flash_cr2 = fspi_readl(FSPI_FLSHA1CR2);
INFO("x_flash_cr2=0x%x\n", x_flash_cr2);
}
#endif
int xspi_read(uint32_t pc_rx_addr, uint32_t *pc_rx_buf, uint32_t x_size_bytes)
{
if (x_size_bytes == 0) {
ERROR("Zero length reads are not allowed\n");
return XSPI_READ_FAIL;
}
#if defined(CONFIG_FSPI_AHB)
return xspi_ahb_read(pc_rx_addr, pc_rx_buf, x_size_bytes);
#else
return xspi_ip_read(pc_rx_addr, pc_rx_buf, x_size_bytes);
#endif
}
#if defined(CONFIG_FSPI_AHB)
int xspi_ahb_read(uint32_t pc_rx_addr, uint32_t *pc_rx_buf, uint32_t x_size_bytes)
{
VERBOSE("In func %s 0x%x\n", __func__, (pc_rx_addr));
if (F_FLASH_SIZE_BYTES <= SZ_16M_BYTES) {
pc_rx_addr = ((uint32_t)(pcRxAddr & MASK_24BIT_ADDRESS));
} else {
pc_rx_addr = ((uint32_t)(pcRxAddr & MASK_32BIT_ADDRESS));
}
pc_rx_addr = ((uint32_t)(pcRxAddr + fspi_flash_base_addr));
if (((pc_rx_addr % 4) != 0) || (((uintptr_t)pc_rx_buf % 4) != 0)) {
WARN("%s: unaligned Start Address src=%ld dst=0x%p\n",
__func__, (pc_rx_addr - fspi_flash_base_addr), pc_rx_buf);
}
/* Directly copy from AHB Buffer */
memcpy(pc_rx_buf, (void *)(uintptr_t)pc_rx_addr, x_size_bytes);
fspi_ahb_invalidate();
return XSPI_SUCCESS;
}
#endif
int xspi_ip_read(uint32_t pc_rx_addr, uint32_t *pv_rx_buf, uint32_t ui_len)
{
uint32_t i = 0U, j = 0U, x_rem = 0U;
uint32_t x_iteration = 0U, x_size_rx = 0U, x_size_wm, temp_size;
uint32_t data = 0U;
uint32_t x_len_bytes;
uint32_t x_addr, sts0, intr, seq_id;
x_addr = (uint32_t) pc_rx_addr;
x_len_bytes = ui_len;
/* Watermark level : 8 bytes. (BY DEFAULT) */
x_size_wm = 8U;
/* Clear RX Watermark interrupt in INT register, if any existing. */
fspi_writel(FSPI_INTR, FSPI_INTR_IPRXWA);
PRA("0x%x", fspi_readl(FSPI_INTR));
/* Invalid the RXFIFO, to run next IP Command */
/* Clears data entries in IP Rx FIFOs, Also reset R/W pointers */
fspi_writel(FSPI_IPRXFCR, FSPI_IPRXFCR_CLR);
fspi_writel(FSPI_INTR, FSPI_INTEN_IPCMDDONE);
while (x_len_bytes) {
/* FlexSPI can store no more than FSPI_RX_IPBUF_SIZE */
x_size_rx = (x_len_bytes > FSPI_RX_IPBUF_SIZE) ?
FSPI_RX_IPBUF_SIZE : x_len_bytes;
/* IP Control Register0 - SF Address to be read */
fspi_writel(FSPI_IPCR0, x_addr);
PRA("0x%x", fspi_readl(FSPI_IPCR0));
/* IP Control Register1 - SEQID_READ operation, Size */
seq_id = CONFIG_FSPI_FASTREAD ?
FSPI_FASTREAD_SEQ_ID : FSPI_READ_SEQ_ID;
fspi_writel(FSPI_IPCR1,
(uint32_t)(seq_id << FSPI_IPCR1_ISEQID_SHIFT) |
(uint16_t) x_size_rx);
PRA("0x%x", fspi_readl(FSPI_IPCR1));
do {
sts0 = fspi_readl(FSPI_STS0);
} while (((sts0 & FSPI_STS0_ARB_IDLE) == 0) &&
((sts0 & FSPI_STS0_SEQ_IDLE) == 0));
/* Trigger IP Read Command */
fspi_writel(FSPI_IPCMD, FSPI_IPCMD_TRG_MASK);
PRA("0x%x", fspi_readl(FSPI_IPCMD));
intr = fspi_readl(FSPI_INTR);
if (((intr & FSPI_INTR_IPCMDGE) != 0) ||
((intr & FSPI_INTR_IPCMDERR) != 0)) {
ERROR("Error in IP READ INTR=0x%x\n", intr);
return -XSPI_IP_READ_FAIL;
}
/* Will read in n iterations of each 8 FIFO's(WM level) */
x_iteration = x_size_rx / x_size_wm;
for (i = 0U; i < x_iteration; i++) {
if ((fspi_readl(FSPI_INTR) & FSPI_INTR_IPRXWA_MASK) == 0) {
PRA("0x%x", fspi_readl(FSPI_INTR));
}
/* Wait for IP Rx Watermark Fill event */
while (!(fspi_readl(FSPI_INTR) & FSPI_INTR_IPRXWA_MASK)) {
PRA("0x%x", fspi_readl(FSPI_INTR));
}
/* Read RX FIFO's(upto WM level) & copy to rxbuffer */
for (j = 0U; j < x_size_wm; j += 4U) {
/* Read FIFO Data Register */
data = fspi_readl(FSPI_RFDR + j);
#if FSPI_IPDATA_SWAP /* Just In case you want swap */
data = bswap32(data);
#endif
memcpy(pv_rx_buf++, &data, 4);
}
/* Clear IP_RX_WATERMARK Event in INTR register */
/* Reset FIFO Read pointer for next iteration.*/
fspi_writel(FSPI_INTR, FSPI_INTR_IPRXWA);
}
x_rem = x_size_rx % x_size_wm;
if (x_rem != 0U) {
/* Wait for data filled */
while (!(fspi_readl(FSPI_IPRXFSTS) & FSPI_IPRXFSTS_FILL_MASK)) {
PRA("0x%x", fspi_readl(FSPI_IPRXFSTS));
}
temp_size = 0;
j = 0U;
while (x_rem > 0U) {
data = 0U;
data = fspi_readl(FSPI_RFDR + j);
#if FSPI_IPDATA_SWAP /* Just In case you want swap */
data = bswap32(data);
#endif
temp_size = (x_rem < 4) ? x_rem : 4;
memcpy(pv_rx_buf++, &data, temp_size);
x_rem -= temp_size;
}
}
while (!(fspi_readl(FSPI_INTR) & FSPI_INTR_IPCMDDONE_MASK)) {
PRA("0x%x", fspi_readl(FSPI_INTR));
}
/* Invalid the RX FIFO, to run next IP Command */
fspi_writel(FSPI_IPRXFCR, FSPI_IPRXFCR_CLR);
/* Clear IP Command Done flag in interrupt register*/
fspi_writel(FSPI_INTR, FSPI_INTR_IPCMDDONE_MASK);
/* Update remaining len, Increment x_addr read pointer. */
x_len_bytes -= x_size_rx;
x_addr += x_size_rx;
}
PR;
return XSPI_SUCCESS;
}
void xspi_ip_write(uint32_t pc_wr_addr, uint32_t *pv_wr_buf, uint32_t ui_len)
{
uint32_t x_iteration = 0U, x_rem = 0U;
uint32_t x_size_tx = 0U, x_size_wm, temp_size;
uint32_t i = 0U, j = 0U;
uint32_t ui_data = 0U;
uint32_t x_addr, x_len_bytes;
x_size_wm = 8U; /* Default TX WaterMark level: 8 Bytes. */
x_addr = (uint32_t)pc_wr_addr;
x_len_bytes = ui_len;
VERBOSE("In func %s[%d] x_addr =0x%x xLen_bytes=%d\n",
__func__, __LINE__, x_addr, x_len_bytes);
while (x_len_bytes != 0U) {
x_size_tx = (x_len_bytes > FSPI_TX_IPBUF_SIZE) ?
FSPI_TX_IPBUF_SIZE : x_len_bytes;
/* IP Control Register0 - SF Address to be read */
fspi_writel(FSPI_IPCR0, x_addr);
INFO("In func %s[%d] x_addr =0x%x xLen_bytes=%d\n",
__func__, __LINE__, x_addr, x_len_bytes);
/*
* Fill TX FIFO's..
*
*/
x_iteration = x_size_tx / x_size_wm;
for (i = 0U; i < x_iteration; i++) {
/* Ensure TX FIFO Watermark Available */
while ((fspi_readl(FSPI_INTR) & FSPI_INTR_IPTXWE_MASK) == 0)
;
/* Fill TxFIFO's ( upto watermark level) */
for (j = 0U; j < x_size_wm; j += 4U) {
memcpy(&ui_data, pv_wr_buf++, 4);
/* Write TX FIFO Data Register */
fspi_writel((FSPI_TFDR + j), ui_data);
}
/* Clear IP_TX_WATERMARK Event in INTR register */
/* Reset the FIFO Write pointer for next iteration */
fspi_writel(FSPI_INTR, FSPI_INTR_IPTXWE);
}
x_rem = x_size_tx % x_size_wm;
if (x_rem != 0U) {
/* Wait for TXFIFO empty */
while (!(fspi_readl(FSPI_INTR) & FSPI_INTR_IPTXWE))
;
temp_size = 0U;
j = 0U;
while (x_rem > 0U) {
ui_data = 0U;
temp_size = (x_rem < 4U) ? x_rem : 4U;
memcpy(&ui_data, pv_wr_buf++, temp_size);
INFO("%d ---> pv_wr_buf=0x%p\n", __LINE__, pv_wr_buf);
fspi_writel((FSPI_TFDR + j), ui_data);
x_rem -= temp_size;
j += 4U ; /* TODO: May not be needed*/
}
/* Clear IP_TX_WATERMARK Event in INTR register */
/* Reset FIFO's Write pointer for next iteration.*/
fspi_writel(FSPI_INTR, FSPI_INTR_IPTXWE);
}
/* IP Control Register1 - SEQID_WRITE operation, Size */
fspi_writel(FSPI_IPCR1, (uint32_t)(FSPI_WRITE_SEQ_ID << FSPI_IPCR1_ISEQID_SHIFT) | (uint16_t) x_size_tx);
/* Trigger IP Write Command */
fspi_writel(FSPI_IPCMD, FSPI_IPCMD_TRG_MASK);
/* Wait for IP Write command done */
while (!(fspi_readl(FSPI_INTR) & FSPI_INTR_IPCMDDONE_MASK))
;
/* Invalidate TX FIFOs & acknowledge IP_CMD_DONE event */
fspi_writel(FSPI_IPTXFCR, FSPI_IPTXFCR_CLR);
fspi_writel(FSPI_INTR, FSPI_INTR_IPCMDDONE_MASK);
/* for next iteration */
x_len_bytes -= x_size_tx;
x_addr += x_size_tx;
}
}
int xspi_write(uint32_t pc_wr_addr, void *pv_wr_buf, uint32_t ui_len)
{
uint32_t x_addr;
uint32_t x_page1_len = 0U, x_page_l_len = 0U;
uint32_t i, j = 0U;
void *buf = pv_wr_buf;
VERBOSE("\nIn func %s\n", __func__);
x_addr = (uint32_t)(pc_wr_addr);
if ((ui_len <= F_PAGE_256) && ((x_addr % F_PAGE_256) == 0)) {
x_page1_len = ui_len;
INFO("%d ---> x_page1_len=0x%x x_page_l_len =0x%x j=0x%x\n", __LINE__, x_page1_len, x_page_l_len, j);
} else if ((ui_len <= F_PAGE_256) && ((x_addr % F_PAGE_256) != 0)) {
x_page1_len = (F_PAGE_256 - (x_addr % F_PAGE_256));
if (ui_len > x_page1_len) {
x_page_l_len = (ui_len - x_page1_len) % F_PAGE_256;
} else {
x_page1_len = ui_len;
x_page_l_len = 0;
}
j = 0U;
INFO("%d 0x%x 0x%x\n", x_addr % F_PAGE_256, x_addr % F_PAGE_256, F_PAGE_256);
INFO("%d ---> x_page1_len=0x%x x_page_l_len =0x%x j=0x%x\n", __LINE__, x_page1_len, x_page_l_len, j);
} else if ((ui_len > F_PAGE_256) && ((x_addr % F_PAGE_256) == 0)) {
j = ui_len / F_PAGE_256;
x_page_l_len = ui_len % F_PAGE_256;
INFO("%d ---> x_page1_len=0x%x x_page_l_len =0x%x j=0x%x\n", __LINE__, x_page1_len, x_page_l_len, j);
} else if ((ui_len > F_PAGE_256) && ((x_addr % F_PAGE_256) != 0)) {
x_page1_len = (F_PAGE_256 - (x_addr % F_PAGE_256));
j = (ui_len - x_page1_len) / F_PAGE_256;
x_page_l_len = (ui_len - x_page1_len) % F_PAGE_256;
INFO("%d ---> x_page1_len=0x%x x_page_l_len =0x%x j=0x%x\n", __LINE__, x_page1_len, x_page_l_len, j);
}
if (x_page1_len != 0U) {
xspi_wren(x_addr);
xspi_ip_write(x_addr, (uint32_t *)buf, x_page1_len);
while (is_flash_busy())
;
INFO("%d Initial pc_wr_addr=0x%x, Final x_addr=0x%x, Initial ui_len=0x%x Final ui_len=0x%x\n",
__LINE__, pc_wr_addr, x_addr, ui_len, (x_addr-pc_wr_addr));
INFO("Initial Buf pv_wr_buf=%p, final Buf=%p\n", pv_wr_buf, buf);
x_addr += x_page1_len;
/* TODO What is buf start is not 4 aligned */
buf = buf + x_page1_len;
}
for (i = 0U; i < j; i++) {
INFO("In for loop Buf pv_wr_buf=%p, final Buf=%p x_addr=0x%x offset_buf %d.\n",
pv_wr_buf, buf, x_addr, x_page1_len/4);
xspi_wren(x_addr);
xspi_ip_write(x_addr, (uint32_t *)buf, F_PAGE_256);
while (is_flash_busy())
;
INFO("%d Initial pc_wr_addr=0x%x, Final x_addr=0x%x, Initial ui_len=0x%x Final ui_len=0x%x\n",
__LINE__, pc_wr_addr, x_addr, ui_len, (x_addr-pc_wr_addr));
x_addr += F_PAGE_256;
/* TODO What is buf start is not 4 aligned */
buf = buf + F_PAGE_256;
INFO("Initial Buf pv_wr_buf=%p, final Buf=%p\n", pv_wr_buf, buf);
}
if (x_page_l_len != 0U) {
INFO("%d Initial Buf pv_wr_buf=%p, final Buf=%p x_page_l_len=0x%x\n", __LINE__, pv_wr_buf, buf, x_page_l_len);
xspi_wren(x_addr);
xspi_ip_write(x_addr, (uint32_t *)buf, x_page_l_len);
while (is_flash_busy())
;
INFO("%d Initial pc_wr_addr=0x%x, Final x_addr=0x%x, Initial ui_len=0x%x Final ui_len=0x%x\n",
__LINE__, pc_wr_addr, x_addr, ui_len, (x_addr-pc_wr_addr));
}
VERBOSE("Now calling func call Invalidate%s\n", __func__);
fspi_ahb_invalidate();
return XSPI_SUCCESS;
}
int xspi_wren(uint32_t pc_wr_addr)
{
VERBOSE("In func %s Addr=0x%x\n", __func__, pc_wr_addr);
fspi_writel(FSPI_IPTXFCR, FSPI_IPTXFCR_CLR);
fspi_writel(FSPI_IPCR0, (uint32_t)pc_wr_addr);
fspi_writel(FSPI_IPCR1, ((FSPI_WREN_SEQ_ID << FSPI_IPCR1_ISEQID_SHIFT) | 0));
fspi_writel(FSPI_IPCMD, FSPI_IPCMD_TRG_MASK);
while ((fspi_readl(FSPI_INTR) & FSPI_INTR_IPCMDDONE_MASK) == 0)
;
fspi_writel(FSPI_INTR, FSPI_INTR_IPCMDDONE_MASK);
return XSPI_SUCCESS;
}
static void fspi_bbluk_er(void)
{
VERBOSE("In func %s\n", __func__);
fspi_writel(FSPI_IPCR0, 0x0);
fspi_writel(FSPI_IPCR1, ((FSPI_BE_SEQ_ID << FSPI_IPCR1_ISEQID_SHIFT) | 20));
fspi_writel(FSPI_IPCMD, FSPI_IPCMD_TRG_MASK);
while ((fspi_readl(FSPI_INTR) & FSPI_INTR_IPCMDDONE_MASK) == 0)
;
fspi_writel(FSPI_INTR, FSPI_INTR_IPCMDDONE_MASK);
}
static void fspi_RDSR(uint32_t *rxbuf, const void *p_addr, uint32_t size)
{
uint32_t iprxfcr = 0U;
uint32_t data = 0U;
iprxfcr = fspi_readl(FSPI_IPRXFCR);
/* IP RX FIFO would be read by processor */
iprxfcr = iprxfcr & (uint32_t)~FSPI_IPRXFCR_CLR;
/* Invalid data entries in IP RX FIFO */
iprxfcr = iprxfcr | FSPI_IPRXFCR_CLR;
fspi_writel(FSPI_IPRXFCR, iprxfcr);
fspi_writel(FSPI_IPCR0, (uintptr_t) p_addr);
fspi_writel(FSPI_IPCR1,
(uint32_t) ((FSPI_RDSR_SEQ_ID << FSPI_IPCR1_ISEQID_SHIFT)
| (uint16_t) size));
/* Trigger the command */
fspi_writel(FSPI_IPCMD, FSPI_IPCMD_TRG_MASK);
/* Wait for command done */
while ((fspi_readl(FSPI_INTR) & FSPI_INTR_IPCMDDONE_MASK) == 0)
;
fspi_writel(FSPI_INTR, FSPI_INTR_IPCMDDONE_MASK);
data = fspi_readl(FSPI_RFDR);
memcpy(rxbuf, &data, size);
/* Rx FIFO invalidation needs to be done prior w1c of INTR.IPRXWA bit */
fspi_writel(FSPI_IPRXFCR, FSPI_IPRXFCR_CLR);
fspi_writel(FSPI_INTR, FSPI_INTR_IPRXWA_MASK);
fspi_writel(FSPI_INTR, FSPI_INTR_IPCMDDONE_MASK);
}
bool is_flash_busy(void)
{
#define FSPI_ONE_BYTE 1
uint8_t data[4];
VERBOSE("In func %s\n\n", __func__);
fspi_RDSR((uint32_t *) data, 0, FSPI_ONE_BYTE);
return !!((uint32_t) data[0] & FSPI_NOR_SR_WIP_MASK);
}
int xspi_bulk_erase(void)
{
VERBOSE("In func %s\n", __func__);
xspi_wren((uint32_t) 0x0);
fspi_bbluk_er();
while (is_flash_busy())
;
fspi_ahb_invalidate();
return XSPI_SUCCESS;
}
static void fspi_sec_er(uint32_t pc_wr_addr)
{
uint32_t x_addr;
VERBOSE("In func %s\n", __func__);
x_addr = (uint32_t)(pc_wr_addr);
fspi_writel(FSPI_IPCR0, x_addr);
INFO("In [%s][%d] Erase address 0x%x\n", __func__, __LINE__, (x_addr));
#if CONFIG_FSPI_ERASE_4K
fspi_writel(FSPI_IPCR1, ((FSPI_4K_SEQ_ID << FSPI_IPCR1_ISEQID_SHIFT) | 0));
#else
fspi_writel(FSPI_IPCR1, ((FSPI_SE_SEQ_ID << FSPI_IPCR1_ISEQID_SHIFT) | 0));
#endif
fspi_writel(FSPI_IPCMD, FSPI_IPCMD_TRG_MASK);
while ((fspi_readl(FSPI_INTR) & FSPI_INTR_IPCMDDONE_MASK) == 0) {
PRA("0x%x", fspi_readl(FSPI_INTR));
}
fspi_writel(FSPI_INTR, FSPI_INTR_IPCMDDONE_MASK);
}
int xspi_sector_erase(uint32_t pc_wr_addr, uint32_t ui_len)
{
uint32_t x_addr, x_len_bytes, i, num_sector = 0U;
VERBOSE("In func %s\n", __func__);
x_addr = (uint32_t)(pc_wr_addr);
if ((x_addr % F_SECTOR_ERASE_SZ) != 0) {
ERROR("!!! In func %s, unalinged start address can only be in multiples of 0x%x\n",
__func__, F_SECTOR_ERASE_SZ);
return -XSPI_ERASE_FAIL;
}
x_len_bytes = ui_len * 1;
if (x_len_bytes < F_SECTOR_ERASE_SZ) {
ERROR("!!! In func %s, Less than 1 sector can only be in multiples of 0x%x\n",
__func__, F_SECTOR_ERASE_SZ);
return -XSPI_ERASE_FAIL;
}
num_sector = x_len_bytes/F_SECTOR_ERASE_SZ;
num_sector += x_len_bytes % F_SECTOR_ERASE_SZ ? 1U : 0U;
INFO("F_SECTOR_ERASE_SZ: 0x%08x, num_sector: %d\n", F_SECTOR_ERASE_SZ, num_sector);
for (i = 0U; i < num_sector ; i++) {
xspi_wren(x_addr + (F_SECTOR_ERASE_SZ * i));
fspi_sec_er(x_addr + (F_SECTOR_ERASE_SZ * i));
while (is_flash_busy())
;
}
fspi_ahb_invalidate();
return XSPI_SUCCESS;
}
__attribute__((unused)) static void fspi_delay_ms(uint32_t x)
{
volatile unsigned long ul_count;
for (ul_count = 0U; ul_count < (30U * x); ul_count++)
;
}
#if defined(DEBUG_FLEXSPI)
static void fspi_dump_regs(void)
{
uint32_t i;
VERBOSE("\nRegisters Dump:\n");
VERBOSE("Flexspi: Register FSPI_MCR0(0x%x) = 0x%08x\n", FSPI_MCR0, fspi_readl(FSPI_MCR0));
VERBOSE("Flexspi: Register FSPI_MCR2(0x%x) = 0x%08x\n", FSPI_MCR2, fspi_readl(FSPI_MCR2));
VERBOSE("Flexspi: Register FSPI_DLL_A_CR(0x%x) = 0x%08x\n", FSPI_DLLACR, fspi_readl(FSPI_DLLACR));
VERBOSE("\n");
for (i = 0U; i < 8U; i++) {
VERBOSE("Flexspi: Register FSPI_AHBRX_BUF0CR0(0x%x) = 0x%08x\n", FSPI_AHBRX_BUF0CR0 + i * 4, fspi_readl((FSPI_AHBRX_BUF0CR0 + i * 4)));
}
VERBOSE("\n");
VERBOSE("Flexspi: Register FSPI_AHBRX_BUF7CR0(0x%x) = 0x%08x\n", FSPI_AHBRX_BUF7CR0, fspi_readl(FSPI_AHBRX_BUF7CR0));
VERBOSE("Flexspi: Register FSPI_AHB_CR(0x%x) \t = 0x%08x\n", FSPI_AHBCR, fspi_readl(FSPI_AHBCR));
VERBOSE("\n");
for (i = 0U; i < 4U; i++) {
VERBOSE("Flexspi: Register FSPI_FLSH_A1_CR2,(0x%x) = 0x%08x\n", FSPI_FLSHA1CR2 + i * 4, fspi_readl(FSPI_FLSHA1CR2 + i * 4));
}
}
#endif
int fspi_init(uint32_t base_reg_addr, uint32_t flash_start_addr)
{
uint32_t mcrx;
uint32_t flash_size;
if (fspi_base_reg_addr != 0U) {
INFO("FSPI is already initialized.\n");
return XSPI_SUCCESS;
}
fspi_base_reg_addr = base_reg_addr;
fspi_flash_base_addr = flash_start_addr;
INFO("Flexspi driver: Version v1.0\n");
INFO("Flexspi: Default MCR0 = 0x%08x, before reset\n", fspi_readl(FSPI_MCR0));
VERBOSE("Flexspi: Resetting controller...\n");
/* Reset FlexSpi Controller */
fspi_writel(FSPI_MCR0, FSPI_MCR0_SWRST);
while ((fspi_readl(FSPI_MCR0) & FSPI_MCR0_SWRST))
; /* FSPI_MCR0_SWRESET_MASK */
/* Disable Controller Module before programming its registersi, especially MCR0 (Master Control Register0) */
fspi_MDIS(1);
/*
* Program MCR0 with default values, AHB Timeout(0xff), IP Timeout(0xff). {FSPI_MCR0- 0xFFFF0000}
*/
/* Timeout wait cycle for AHB command grant */
mcrx = fspi_readl(FSPI_MCR0);
mcrx |= (uint32_t)((FSPI_MAX_TIMEOUT_AHBCMD << FSPI_MCR0_AHBGRANTWAIT_SHIFT) & (FSPI_MCR0_AHBGRANTWAIT_MASK));
/* Time out wait cycle for IP command grant*/
mcrx |= (uint32_t) (FSPI_MAX_TIMEOUT_IPCMD << FSPI_MCR0_IPGRANTWAIT_SHIFT) & (FSPI_MCR0_IPGRANTWAIT_MASK);
/* TODO why BE64 set BE32*/
mcrx |= (uint32_t) (FSPI_ENDCFG_LE64 << FSPI_MCR0_ENDCFG_SHIFT) & FSPI_MCR0_ENDCFG_MASK;
fspi_writel(FSPI_MCR0, mcrx);
/* Reset the DLL register to default value */
fspi_writel(FSPI_DLLACR, FSPI_DLLACR_OVRDEN);
fspi_writel(FSPI_DLLBCR, FSPI_DLLBCR_OVRDEN);
#if ERRATA_FLASH_A050272 /* ERRATA DLL */
for (uint8_t delay = 100U; delay > 0U; delay--) {
__asm__ volatile ("nop");
}
#endif
/* Configure flash control registers for different chip select */
flash_size = (F_FLASH_SIZE_BYTES * FLASH_NUM) / FSPI_BYTES_PER_KBYTES;
fspi_writel(FSPI_FLSHA1CR0, flash_size);
fspi_writel(FSPI_FLSHA2CR0, 0U);
fspi_writel(FSPI_FLSHB1CR0, 0U);
fspi_writel(FSPI_FLSHB2CR0, 0U);
#if defined(CONFIG_FSPI_AHB)
fspi_init_ahb();
#endif
/* RE-Enable Controller Module */
fspi_MDIS(0);
INFO("Flexspi: After MCR0 = 0x%08x,\n", fspi_readl(FSPI_MCR0));
fspi_setup_LUT();
/* Dump of all registers, ensure controller not disabled anymore*/
#if defined(DEBUG_FLEXSPI)
fspi_dump_regs();
#endif
INFO("Flexspi: Init done!!\n");
#if DEBUG_FLEXSPI
uint32_t xspi_addr = SZ_57M;
/*
* Second argument of fspi_test is the size of buffer(s) passed
* to the function.
* SIZE_BUFFER defined in test_fspi.c is kept large enough to
* accommodate variety of sizes for regressive tests.
*/
fspi_test(xspi_addr, 0x40, 0);
fspi_test(xspi_addr, 0x15, 2);
fspi_test(xspi_addr, 0x80, 0);
fspi_test(xspi_addr, 0x81, 0);
fspi_test(xspi_addr, 0x79, 3);
fspi_test(xspi_addr + 0x11, 0x15, 0);
fspi_test(xspi_addr + 0x11, 0x40, 0);
fspi_test(xspi_addr + 0xff, 0x40, 1);
fspi_test(xspi_addr + 0x25, 0x81, 2);
fspi_test(xspi_addr + 0xef, 0x6f, 3);
fspi_test((xspi_addr - F_SECTOR_ERASE_SZ), 0x229, 0);
#endif
return XSPI_SUCCESS;
}

View File

@ -0,0 +1,385 @@
/*
* Copyright 2021 NXP
*
* SPDX-License-Identifier: BSD-3-Clause
*
* FlexSpi Registers & Bits definition.
*
*/
#ifndef FSPI_H
#define FSPI_H
#ifndef __ASSEMBLER__
#include <lib/mmio.h>
#ifdef NXP_FSPI_BE
#define fspi_in32(a) bswap32(mmio_read_32((uintptr_t)(a)))
#define fspi_out32(a, v) mmio_write_32((uintptr_t)(a), bswap32(v))
#elif defined(NXP_FSPI_LE)
#define fspi_in32(a) mmio_read_32((uintptr_t)(a))
#define fspi_out32(a, v) mmio_write_32((uintptr_t)(a), v)
#else
#error Please define FSPI register endianness
#endif
#endif
/* All LE so not swap needed */
#define FSPI_IPDATA_SWAP 0U
#define FSPI_AHBDATA_SWAP 0U
#define CONFIG_FSPI_FASTREAD 1U
#define FSPI_BYTES_PER_KBYTES 0x400U
#define FLASH_NUM 1U
#define FSPI_READ_SEQ_ID 0U
#define FSPI_WREN_SEQ_ID 1U
#define FSPI_WRITE_SEQ_ID 2U
#define FSPI_SE_SEQ_ID 3U
#define FSPI_RDSR_SEQ_ID 4U
#define FSPI_BE_SEQ_ID 5U
#define FSPI_FASTREAD_SEQ_ID 6U
#define FSPI_4K_SEQ_ID 7U
/*
* LUT register layout:
*
* ---------------------------------------------------
* | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
* ---------------------------------------------------
*
* INSTR_SHIFT- 10, PAD_SHIFT - 8, OPRND_SHIFT -0
*/
#define FSPI_INSTR_OPRND0_SHIFT 0
#define FSPI_INSTR_OPRND0(x) (x << FSPI_INSTR_OPRND0_SHIFT)
#define FSPI_INSTR_PAD0_SHIFT 8
#define FSPI_INSTR_PAD0(x) ((x) << FSPI_INSTR_PAD0_SHIFT)
#define FSPI_INSTR_OPCODE0_SHIFT 10
#define FSPI_INSTR_OPCODE0(x) ((x) << FSPI_INSTR_OPCODE0_SHIFT)
#define FSPI_INSTR_OPRND1_SHIFT 16
#define FSPI_INSTR_OPRND1(x) ((x) << FSPI_INSTR_OPRND1_SHIFT)
#define FSPI_INSTR_PAD1_SHIFT 24
#define FSPI_INSTR_PAD1(x) ((x) << FSPI_INSTR_PAD1_SHIFT)
#define FSPI_INSTR_OPCODE1_SHIFT 26
#define FSPI_INSTR_OPCODE1(x) ((x) << FSPI_INSTR_OPCODE1_SHIFT)
/* Instruction set for the LUT register. */
#define LUT_STOP 0x00
#define LUT_CMD 0x01
#define LUT_ADDR 0x02
#define LUT_CADDR_SDR 0x03
#define LUT_MODE 0x04
#define LUT_MODE2 0x05
#define LUT_MODE4 0x06
#define LUT_MODE8 0x07
#define LUT_NXP_WRITE 0x08
#define LUT_NXP_READ 0x09
#define LUT_LEARN_SDR 0x0A
#define LUT_DATSZ_SDR 0x0B
#define LUT_DUMMY 0x0C
#define LUT_DUMMY_RWDS_SDR 0x0D
#define LUT_JMP_ON_CS 0x1F
#define LUT_CMD_DDR 0x21
#define LUT_ADDR_DDR 0x22
#define LUT_CADDR_DDR 0x23
#define LUT_MODE_DDR 0x24
#define LUT_MODE2_DDR 0x25
#define LUT_MODE4_DDR 0x26
#define LUT_MODE8_DDR 0x27
#define LUT_WRITE_DDR 0x28
#define LUT_READ_DDR 0x29
#define LUT_LEARN_DDR 0x2A
#define LUT_DATSZ_DDR 0x2B
#define LUT_DUMMY_DDR 0x2C
#define LUT_DUMMY_RWDS_DDR 0x2D
#define FSPI_NOR_CMD_READ 0x03
#define FSPI_NOR_CMD_READ_4B 0x13
#define FSPI_NOR_CMD_FASTREAD 0x0b
#define FSPI_NOR_CMD_FASTREAD_4B 0x0c
#define FSPI_NOR_CMD_PP 0x02
#define FSPI_NOR_CMD_PP_4B 0x12
#define FSPI_NOR_CMD_WREN 0x06
#define FSPI_NOR_CMD_SE_64K 0xd8
#define FSPI_NOR_CMD_SE_64K_4B 0xdc
#define FSPI_NOR_CMD_SE_4K 0x20
#define FSPI_NOR_CMD_SE_4K_4B 0x21
#define FSPI_NOR_CMD_BE 0x60
#define FSPI_NOR_CMD_RDSR 0x05
#define FSPI_NOR_CMD_WREN_STOP 0x04
#define FSPI_LUT_STOP 0x00
#define FSPI_LUT_CMD 0x01
#define FSPI_LUT_ADDR 0x02
#define FSPI_LUT_PAD1 0
#define FSPI_LUT_PAD2 1
#define FSPI_LUT_PAD4 2
#define FSPI_LUT_PAD8 3
#define FSPI_LUT_ADDR24BIT 0x18
#define FSPI_LUT_ADDR32BIT 0x20
#define FSPI_LUT_WRITE 0x08
#define FSPI_LUT_READ 0x09
#define FSPI_DUMMY_SDR 0x0c
/* TODO Check size if functional*/
#define FSPI_RX_IPBUF_SIZE 0x200 /* 64*64 bits */
#define FSPI_TX_IPBUF_SIZE 0x400 /* 128*64 bits */
#define FSPI_RX_MAX_AHBBUF_SIZE 0x800 /* 256 * 64bits */
#define FSPI_TX_MAX_AHBBUF_SIZE 0x40 /* 8 * 64bits */
#define FSPI_LUTREG_OFFSET 0x200ul
#define FSPI_MAX_TIMEOUT_AHBCMD 0xFFU
#define FSPI_MAX_TIMEOUT_IPCMD 0xFF
#define FSPI_SER_CLK_DIV 0x04
#define FSPI_HSEN 0
#define FSPI_ENDCFG_BE64 0x01
#define FSPI_ENDCFG_BE32 0x03
#define FSPI_ENDCFG_LE32 0x02
#define FSPI_ENDCFG_LE64 0x0
#define MASK_24BIT_ADDRESS 0x00ffffff
#define MASK_32BIT_ADDRESS 0xffffffff
/* Registers used by the driver */
#define FSPI_MCR0 0x0ul
#define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24)
#define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16)
#define FSPI_MCR0_LEARN_EN BIT(15)
#define FSPI_MCR0_SCRFRUN_EN BIT(14)
#define FSPI_MCR0_OCTCOMB_EN BIT(13)
#define FSPI_MCR0_DOZE_EN BIT(12)
#define FSPI_MCR0_HSEN BIT(11)
#define FSPI_MCR0_SERCLKDIV BIT(8)
#define FSPI_MCR0_ATDF_EN BIT(7)
#define FSPI_MCR0_ARDF_EN BIT(6)
#define FSPI_MCR0_RXCLKSRC(x) ((x) << 4)
#define FSPI_MCR0_END_CFG(x) ((x) << 2)
#define FSPI_MCR0_MDIS BIT(1)
#define FSPI_MCR0_SWRST BIT(0)
#define FSPI_MCR0_AHBGRANTWAIT_SHIFT 24
#define FSPI_MCR0_AHBGRANTWAIT_MASK (0xFFU << FSPI_MCR0_AHBGRANTWAIT_SHIFT)
#define FSPI_MCR0_IPGRANTWAIT_SHIFT 16
#define FSPI_MCR0_IPGRANTWAIT_MASK (0xFF << FSPI_MCR0_IPGRANTWAIT_SHIFT)
#define FSPI_MCR0_HSEN_SHIFT 11
#define FSPI_MCR0_HSEN_MASK (1 << FSPI_MCR0_HSEN_SHIFT)
#define FSPI_MCR0_SERCLKDIV_SHIFT 8
#define FSPI_MCR0_SERCLKDIV_MASK (7 << FSPI_MCR0_SERCLKDIV_SHIFT)
#define FSPI_MCR0_ENDCFG_SHIFT 2
#define FSPI_MCR0_ENDCFG_MASK (3 << FSPI_MCR0_ENDCFG_SHIFT)
#define FSPI_MCR0_RXCLKSRC_SHIFT 4
#define FSPI_MCR0_RXCLKSRC_MASK (3 << FSPI_MCR0_RXCLKSRC_SHIFT)
#define FSPI_MCR1 0x04
#define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16)
#define FSPI_MCR1_AHB_TIMEOUT(x) (x)
#define FSPI_MCR2 0x08
#define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24)
#define FSPI_MCR2_SAMEDEVICEEN BIT(15)
#define FSPI_MCR2_CLRLRPHS BIT(14)
#define FSPI_MCR2_ABRDATSZ BIT(8)
#define FSPI_MCR2_ABRLEARN BIT(7)
#define FSPI_MCR2_ABR_READ BIT(6)
#define FSPI_MCR2_ABRWRITE BIT(5)
#define FSPI_MCR2_ABRDUMMY BIT(4)
#define FSPI_MCR2_ABR_MODE BIT(3)
#define FSPI_MCR2_ABRCADDR BIT(2)
#define FSPI_MCR2_ABRRADDR BIT(1)
#define FSPI_MCR2_ABR_CMD BIT(0)
#define FSPI_AHBCR 0x0c
#define FSPI_AHBCR_RDADDROPT BIT(6)
#define FSPI_AHBCR_PREF_EN BIT(5)
#define FSPI_AHBCR_BUFF_EN BIT(4)
#define FSPI_AHBCR_CACH_EN BIT(3)
#define FSPI_AHBCR_CLRTXBUF BIT(2)
#define FSPI_AHBCR_CLRRXBUF BIT(1)
#define FSPI_AHBCR_PAR_EN BIT(0)
#define FSPI_INTEN 0x10
#define FSPI_INTEN_SCLKSBWR BIT(9)
#define FSPI_INTEN_SCLKSBRD BIT(8)
#define FSPI_INTEN_DATALRNFL BIT(7)
#define FSPI_INTEN_IPTXWE BIT(6)
#define FSPI_INTEN_IPRXWA BIT(5)
#define FSPI_INTEN_AHBCMDERR BIT(4)
#define FSPI_INTEN_IPCMDERR BIT(3)
#define FSPI_INTEN_AHBCMDGE BIT(2)
#define FSPI_INTEN_IPCMDGE BIT(1)
#define FSPI_INTEN_IPCMDDONE BIT(0)
#define FSPI_INTR 0x14
#define FSPI_INTR_SCLKSBWR BIT(9)
#define FSPI_INTR_SCLKSBRD BIT(8)
#define FSPI_INTR_DATALRNFL BIT(7)
#define FSPI_INTR_IPTXWE BIT(6)
#define FSPI_INTR_IPRXWA BIT(5)
#define FSPI_INTR_AHBCMDERR BIT(4)
#define FSPI_INTR_IPCMDERR BIT(3)
#define FSPI_INTR_AHBCMDGE BIT(2)
#define FSPI_INTR_IPCMDGE BIT(1)
#define FSPI_INTR_IPCMDDONE BIT(0)
#define FSPI_LUTKEY 0x18
#define FSPI_LUTKEY_VALUE 0x5AF05AF0
#define FSPI_LCKCR 0x1C
#define FSPI_LCKER_LOCK 0x1
#define FSPI_LCKER_UNLOCK 0x2
#define FSPI_BUFXCR_INVALID_MSTRID 0xE
#define FSPI_AHBRX_BUF0CR0 0x20
#define FSPI_AHBRX_BUF1CR0 0x24
#define FSPI_AHBRX_BUF2CR0 0x28
#define FSPI_AHBRX_BUF3CR0 0x2C
#define FSPI_AHBRX_BUF4CR0 0x30
#define FSPI_AHBRX_BUF5CR0 0x34
#define FSPI_AHBRX_BUF6CR0 0x38
#define FSPI_AHBRX_BUF7CR0 0x3C
#define FSPI_AHBRXBUF0CR7_PREF BIT(31)
#define FSPI_AHBRX_BUF0CR1 0x40
#define FSPI_AHBRX_BUF1CR1 0x44
#define FSPI_AHBRX_BUF2CR1 0x48
#define FSPI_AHBRX_BUF3CR1 0x4C
#define FSPI_AHBRX_BUF4CR1 0x50
#define FSPI_AHBRX_BUF5CR1 0x54
#define FSPI_AHBRX_BUF6CR1 0x58
#define FSPI_AHBRX_BUF7CR1 0x5C
#define FSPI_FLSHA1CR0 0x60
#define FSPI_FLSHA2CR0 0x64
#define FSPI_FLSHB1CR0 0x68
#define FSPI_FLSHB2CR0 0x6C
#define FSPI_FLSHXCR0_SZ_KB 10
#define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB)
#define FSPI_FLSHA1CR1 0x70
#define FSPI_FLSHA2CR1 0x74
#define FSPI_FLSHB1CR1 0x78
#define FSPI_FLSHB2CR1 0x7C
#define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16)
#define FSPI_FLSHXCR1_CAS(x) ((x) << 11)
#define FSPI_FLSHXCR1_WA BIT(10)
#define FSPI_FLSHXCR1_TCSH(x) ((x) << 5)
#define FSPI_FLSHXCR1_TCSS(x) (x)
#define FSPI_FLSHXCR1_TCSH_SHIFT 5
#define FSPI_FLSHXCR1_TCSH_MASK (0x1F << FSPI_FLSHXCR1_TCSH_SHIFT)
#define FSPI_FLSHXCR1_TCSS_SHIFT 0
#define FSPI_FLSHXCR1_TCSS_MASK (0x1F << FSPI_FLSHXCR1_TCSS_SHIFT)
#define FSPI_FLSHA1CR2 0x80
#define FSPI_FLSHA2CR2 0x84
#define FSPI_FLSHB1CR2 0x88
#define FSPI_FLSHB2CR2 0x8C
#define FSPI_FLSHXCR2_CLRINSP BIT(24)
#define FSPI_FLSHXCR2_AWRWAIT BIT(16)
#define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13
#define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8
#define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5
#define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0
#define FSPI_IPCR0 0xA0
#define FSPI_IPCR1 0xA4
#define FSPI_IPCR1_IPAREN BIT(31)
#define FSPI_IPCR1_SEQNUM_SHIFT 24
#define FSPI_IPCR1_SEQID_SHIFT 16
#define FSPI_IPCR1_IDATSZ(x) (x)
#define FSPI_IPCMD 0xB0
#define FSPI_IPCMD_TRG BIT(0)
/* IP Command Register */
#define FSPI_IPCMD_TRG_SHIFT 0
#define FSPI_IPCMD_TRG_MASK (1 << FSPI_IPCMD_TRG_SHIFT)
#define FSPI_INTR_IPRXWA_SHIFT 5
#define FSPI_INTR_IPRXWA_MASK (1 << FSPI_INTR_IPRXWA_SHIFT)
#define FSPI_INTR_IPCMDDONE_SHIFT 0
#define FSPI_INTR_IPCMDDONE_MASK (1 << FSPI_INTR_IPCMDDONE_SHIFT)
#define FSPI_INTR_IPTXWE_SHIFT 6
#define FSPI_INTR_IPTXWE_MASK (1 << FSPI_INTR_IPTXWE_SHIFT)
#define FSPI_IPTXFSTS_FILL_SHIFT 0
#define FSPI_IPTXFSTS_FILL_MASK (0xFF << FSPI_IPTXFSTS_FILL_SHIFT)
#define FSPI_IPCR1_ISEQID_SHIFT 16
#define FSPI_IPCR1_ISEQID_MASK (0x1F << FSPI_IPCR1_ISEQID_SHIFT)
#define FSPI_IPRXFSTS_FILL_SHIFT 0
#define FSPI_IPRXFSTS_FILL_MASK (0xFF << FSPI_IPRXFSTS_FILL_SHIFT)
#define FSPI_DLPR 0xB4
#define FSPI_IPRXFCR 0xB8
#define FSPI_IPRXFCR_CLR BIT(0)
#define FSPI_IPRXFCR_DMA_EN BIT(1)
#define FSPI_IPRXFCR_WMRK(x) ((x) << 2)
#define FSPI_IPTXFCR 0xBC
#define FSPI_IPTXFCR_CLR BIT(0)
#define FSPI_IPTXFCR_DMA_EN BIT(1)
#define FSPI_IPTXFCR_WMRK(x) ((x) << 2)
#define FSPI_DLLACR 0xC0
#define FSPI_DLLACR_OVRDEN BIT(8)
#define FSPI_DLLBCR 0xC4
#define FSPI_DLLBCR_OVRDEN BIT(8)
#define FSPI_STS0 0xE0
#define FSPI_STS0_DLPHB(x) ((x) << 8)
#define FSPI_STS0_DLPHA(x) ((x) << 4)
#define FSPI_STS0_CMD_SRC(x) ((x) << 2)
#define FSPI_STS0_ARB_IDLE BIT(1)
#define FSPI_STS0_SEQ_IDLE BIT(0)
#define FSPI_STS1 0xE4
#define FSPI_STS1_IP_ERRCD(x) ((x) << 24)
#define FSPI_STS1_IP_ERRID(x) ((x) << 16)
#define FSPI_STS1_AHB_ERRCD(x) ((x) << 8)
#define FSPI_STS1_AHB_ERRID(x) (x)
#define FSPI_AHBSPNST 0xEC
#define FSPI_AHBSPNST_DATLFT(x) ((x) << 16)
#define FSPI_AHBSPNST_BUFID(x) ((x) << 1)
#define FSPI_AHBSPNST_ACTIVE BIT(0)
#define FSPI_IPRXFSTS 0xF0
#define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16)
#define FSPI_IPRXFSTS_FILL(x) (x)
#define FSPI_IPTXFSTS 0xF4
#define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16)
#define FSPI_IPTXFSTS_FILL(x) (x)
#define FSPI_NOR_SR_WIP_SHIFT (0)
#define FSPI_NOR_SR_WIP_MASK (1 << FSPI_NOR_SR_WIP_SHIFT)
#define FSPI_RFDR 0x100
#define FSPI_TFDR 0x180
#define FSPI_LUT_BASE 0x200
#define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
#define FSPI_LUT_REG(idx) \
(FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
/* register map end */
#endif

View File

@ -0,0 +1,91 @@
/*
* Copyright 2021 NXP
*
* SPDX-License-Identifier: BSD-3-Clause
*
*/
#include <stdint.h>
#include <stdio.h>
#include <common/debug.h>
#include <flash_info.h>
#include "fspi.h"
#include <fspi_api.h>
/*
* The macros are defined to be used as test vector for testing fspi.
*/
#define SIZE_BUFFER 0x250
/*
* You may choose fspi_swap based on core endianness and flexspi IP/AHB
* buffer endianness set in MCR.
*/
#define fspi_swap32(A) (A)
void fspi_test(uint32_t fspi_test_addr, uint32_t size, int extra)
{
uint32_t buffer[SIZE_BUFFER];
uint32_t count = 1;
uint32_t failed, i;
NOTICE("-------------------------- %d----------------------------------\n", count++);
INFO("Sector Erase size: 0x%08x, size: %d\n", F_SECTOR_ERASE_SZ, size);
/* Test Sector Erase */
xspi_sector_erase(fspi_test_addr - fspi_test_addr % F_SECTOR_ERASE_SZ,
F_SECTOR_ERASE_SZ);
/* Test Erased data using IP read */
xspi_ip_read((fspi_test_addr), buffer, size * 4);
failed = 0;
for (i = 0; i < size; i++)
if (fspi_swap32(0xffffffff) != buffer[i]) {
failed = 1;
break;
}
if (failed == 0) {
NOTICE("[%d]: Success Erase: data in buffer[%d] 0x%08x\n", __LINE__, i-3, buffer[i-3]);
} else {
ERROR("Erase: Failed -->xxx with buffer[%d]=0x%08x\n", i, buffer[i]);
}
for (i = 0; i < SIZE_BUFFER; i++)
buffer[i] = 0x12345678;
/* Write data from buffer to flash */
xspi_write(fspi_test_addr, (void *)buffer, (size * 4 + extra));
/* Check written data using IP read */
xspi_ip_read(fspi_test_addr, buffer, (size * 4 + extra));
failed = 0;
for (i = 0; i < size; i++)
if (fspi_swap32(0x12345678) != buffer[i]) {
failed = 1;
break;
}
if (failed == 0) {
NOTICE("[%d]: Success IpWrite with IP READ in buffer[%d] 0x%08x\n", __LINE__, i-3, buffer[i-3]);
} else {
ERROR("Write: Failed -->xxxx with IP READ in buffer[%d]=0x%08x\n", i, buffer[i]);
return;
}
/* xspi_read may use AHB read */
xspi_read((fspi_test_addr), buffer, (size * 4 + extra));
failed = 0;
for (i = 0; i < size; i++)
if (fspi_swap32(0x12345678) != buffer[i]) {
failed = 1;
break;
}
if (failed == 0) {
NOTICE("[%d]: Success IpWrite with AHB OR IP READ on buffer[%d] 0x%08x\n", __LINE__, i-3, buffer[i-3]);
} else {
ERROR("Write: Failed -->xxxx with AHB READ on buffer[%d]=0x%08x\n", i, buffer[i]);
return;
}
}

View File

@ -0,0 +1,61 @@
// SPDX-License-Identifier: BSD-3-Clause
/*
* Copyright 2020 NXP
*/
/**
* @Flash info
*
*/
#ifndef FLASH_INFO_H
#define FLASH_INFO_H
#define SZ_16M_BYTES 0x1000000U
#if defined(CONFIG_MT25QU512A)
#define F_SECTOR_64K 0x10000U
#define F_PAGE_256 0x100U
#define F_SECTOR_4K 0x1000U
#define F_FLASH_SIZE_BYTES 0x4000000U
#define F_SECTOR_ERASE_SZ F_SECTOR_64K
#ifdef CONFIG_FSPI_4K_ERASE
#define F_SECTOR_ERASE_SZ F_SECTOR_4K
#endif
#elif defined(CONFIG_MX25U25645G)
#define F_SECTOR_64K 0x10000U
#define F_PAGE_256 0x100U
#define F_SECTOR_4K 0x1000U
#define F_FLASH_SIZE_BYTES 0x2000000U
#define F_SECTOR_ERASE_SZ F_SECTOR_64K
#ifdef CONFIG_FSPI_4K_ERASE
#define F_SECTOR_ERASE_SZ F_SECTOR_4K
#endif
#elif defined(CONFIG_MX25U51245G)
#define F_SECTOR_64K 0x10000U
#define F_PAGE_256 0x100U
#define F_SECTOR_4K 0x1000U
#define F_FLASH_SIZE_BYTES 0x4000000U
#define F_SECTOR_ERASE_SZ F_SECTOR_64K
#ifdef CONFIG_FSPI_4K_ERASE
#define F_SECTOR_ERASE_SZ F_SECTOR_4K
#endif
#elif defined(CONFIG_MT35XU512A)
#define F_SECTOR_128K 0x20000U
#define F_SECTOR_32K 0x8000U
#define F_PAGE_256 0x100U
#define F_SECTOR_4K 0x1000U
#define F_FLASH_SIZE_BYTES 0x4000000U
#define F_SECTOR_ERASE_SZ F_SECTOR_128K
#ifdef CONFIG_FSPI_4K_ERASE
#define F_SECTOR_ERASE_SZ F_SECTOR_4K
#endif
#ifdef NXP_WARM_BOOT
#define FLASH_WR_COMP_WAIT_BY_NOP_COUNT 0x20000
#endif
#endif
#endif /* FLASH_INFO_H */

View File

@ -0,0 +1,122 @@
/*
* Copyright 2021 NXP
*
* SPDX-License-Identifier: BSD-3-Clause
*
*/
/*!
* @file fspi_api.h
* @brief This file contains the FlexSPI/FSPI API to communicate
* to attached Slave device.
* @addtogroup FSPI_API
* @{
*/
#ifndef FSPI_API_H
#define FSPI_API_H
#if DEBUG_FLEXSPI
#define SZ_57M 0x3900000u
#endif
/*!
* Basic set of APIs.
*/
/*!
* @details AHB read/IP Read, decision to be internal to API
* Minimum Read size = 1Byte
* @param[in] src_off source offset from where data to read from flash
* @param[out] des Destination location where data needs to be copied
* @param[in] len length in Bytes,where 1-word=4-bytes/32-bits
*
* @return XSPI_SUCCESS or error code
*/
int xspi_read(uint32_t src_off, uint32_t *des, uint32_t len);
/*!
* @details Sector erase, Minimum size
* 256KB(0x40000)/128KB(0x20000)/64K(0x10000)/4K(0x1000)
* depending upon flash, Calls xspi_wren() internally
* @param[out] erase_offset Destination erase location on flash which
* has to be erased, needs to be multiple of 0x40000/0x20000/0x10000
* @param[in] erase_len length in bytes in Hex like 0x100000 for 1MB, minimum
* erase size is 1 sector(0x40000/0x20000/0x10000)
*
* @return XSPI_SUCCESS or error code
*/
int xspi_sector_erase(uint32_t erase_offset, uint32_t erase_len);
/*!
* @details IP write, For writing data to flash, calls xspi_wren() internally.
* Single/multiple page write can start @any offset, but performance will be low
* due to ERRATA
* @param[out] dst_off Destination location on flash where data needs to
* be written
* @param[in] src source offset from where data to be read
* @param[in] len length in bytes,where 1-word=4-bytes/32-bits
*
* @return XSPI_SUCCESS or error code
*/
int xspi_write(uint32_t dst_off, void *src, uint32_t len);
/*!
* @details fspi_init, Init function.
* @param[in] uint32_t base_reg_addr
* @param[in] uint32_t flash_start_addr
*
* @return XSPI_SUCCESS or error code
*/
int fspi_init(uint32_t base_reg_addr, uint32_t flash_start_addr);
/*!
* @details is_flash_busy, Check if any erase or write or lock is
* pending on flash/slave
* @param[in] void
*
* @return TRUE/FLASE
*/
bool is_flash_busy(void);
/*!
* Advanced set of APIs.
*/
/*!
* @details Write enable, to be used by advance users only.
* Step 1 for sending write commands to flash.
* @param[in] dst_off destination offset where data will be written
*
* @return XSPI_SUCCESS or error code
*/
int xspi_wren(uint32_t dst_off);
/*!
* @details AHB read, meaning direct memory mapped access to flash,
* Minimum Read size = 1Byte
* @param[in] src_off source offset from where data to read from flash,
* needs to be word aligned
* @param[out] des Destination location where data needs to be copied
* @param[in] len length in Bytes,where 1-word=4-bytes/32-bits
*
* @return XSPI_SUCCESS or error code
*/
int xspi_ahb_read(uint32_t src_off, uint32_t *des, uint32_t len);
/*!
* @details IP read, READ via RX buffer from flash, minimum READ size = 1Byte
* @param[in] src_off source offset from where data to be read from flash
* @param[out] des Destination location where data needs to be copied
* @param[in] len length in Bytes,where 1-word=4-bytes/32-bits
*
* @return XSPI_SUCCESS or error code
*/
int xspi_ip_read(uint32_t src_off, uint32_t *des, uint32_t len);
/*!
* @details CHIP erase, Erase complete chip in one go
*
* @return XSPI_SUCCESS or error code
*/
int xspi_bulk_erase(void);
/*!
* Add test cases to confirm flash read/erase/write functionality.
*/
void fspi_test(uint32_t fspi_test_addr, uint32_t size, int extra);
#endif /* FSPI_API_H */

View File

@ -0,0 +1,28 @@
/*
* Copyright 2020 NXP
*
* SPDX-License-Identifier: BSD-3-Clause
*
*/
/* error codes */
#ifndef XSPI_ERROR_CODES_H
#define XSPI_ERROR_CODES_H
#include <errno.h>
typedef enum {
XSPI_SUCCESS = 0,
XSPI_READ_FAIL = ELAST + 1,
XSPI_ERASE_FAIL,
XSPI_IP_READ_FAIL,
XSPI_AHB_READ_FAIL,
XSPI_IP_WRITE_FAIL,
XSPI_AHB_WRITE_FAIL,
XSPI_BLOCK_TIMEOUT,
XSPI_UNALIGN_ADDR,
XSPI_UNALIGN_SIZE,
} XSPI_STATUS_CODES;
#undef ELAST
#define ELAST XSPI_STATUS_CODES.XSPI_UNALIGN_SIZE
#endif