Commit Graph

7 Commits

Author SHA1 Message Date
Chris Kay 68120783d6 feat(mpmm): add support for MPMM
MPMM - the Maximum Power Mitigation Mechanism - is an optional
microarchitectural feature present on some Armv9-A cores, introduced
with the Cortex-X2, Cortex-A710 and Cortex-A510 cores.

MPMM allows the SoC firmware to detect and limit high activity events
to assist in SoC processor power domain dynamic power budgeting and
limit the triggering of whole-rail (i.e. clock chopping) responses to
overcurrent conditions.

This feature is enabled via the `ENABLE_MPMM` build option.
Configuration can be done via FCONF by enabling `ENABLE_MPMM_FCONF`, or
by via the plaform-implemented `plat_mpmm_topology` function.

Change-Id: I77da82808ad4744ece8263f0bf215c5a091c3167
Signed-off-by: Chris Kay <chris.kay@arm.com>
2021-10-26 12:15:42 +01:00
Chris Kay 742ca2307f feat(amu): enable per-core AMU auxiliary counters
This change makes AMU auxiliary counters configurable on a per-core
basis, controlled by `ENABLE_AMU_AUXILIARY_COUNTERS`.

Auxiliary counters can be described via the `HW_CONFIG` device tree if
the `ENABLE_AMU_FCONF` build option is enabled, or the platform must
otherwise implement the `plat_amu_topology` function.

A new phandle property for `cpu` nodes (`amu`) has been introduced to
the `HW_CONFIG` specification to allow CPUs to describe the view of
their own AMU:

```
cpu0: cpu@0 {
    ...

    amu = <&cpu0_amu>;
};
```

Multiple cores may share an `amu` handle if they implement the
same set of auxiliary counters.

AMU counters are described for one or more AMUs through the use of a new
`amus` node:

```
amus {
    cpu0_amu: amu-0 {
        #address-cells = <1>;
        #size-cells = <0>;

        counter@0 {
            reg = <0>;

            enable-at-el3;
        };

        counter@n {
            reg = <n>;

            ...
        };
    };
};
```

This structure describes the **auxiliary** (group 1) AMU counters.
Architected counters have architecturally-defined behaviour, and as
such do not require DTB entries.

These `counter` nodes support two properties:

- The `reg` property represents the counter register index.
- The presence of the `enable-at-el3` property determines whether
  the firmware should enable the counter prior to exiting EL3.

Change-Id: Ie43aee010518c5725a3b338a4899b0857caf4c28
Signed-off-by: Chris Kay <chris.kay@arm.com>
2021-10-26 12:15:33 +01:00
Chris Kay e04da4c8e1 build(fconf)!: clean up source collection
Including the FCONF Makefile today automatically places the FCONF
sources into the source list of the BL1 and BL2 images. This may be
undesirable if, for instance, FCONF is only required for BL31.

This change moves the BL1 and BL2 source appends out of the common
Makefile to where they are required.

BREAKING CHANGE: FCONF is no longer added to BL1 and BL2 automatically
when the FCONF Makefile (`fconf.mk`) is included. When including this
Makefile, consider whether you need to add `${FCONF_SOURCES}` and
`${FCONF_DYN_SOURCES}` to `BL1_SOURCES` and `BL2_SOURCES`.

Change-Id: Ic028eabb7437ae95a57c5bcb7821044d31755c77
Signed-off-by: Chris Kay <chris.kay@arm.com>
2021-10-26 12:14:29 +01:00
Manish V Badarkhe 9233dd09ca fconf: Allow fconf to load additional firmware configuration
Modified the `fconf_load_config` function so that it can
additionally support loading of tb_fw_config along with
fw_config.

Signed-off-by: Louis Mayencourt <louis.mayencourt@arm.com>
Signed-off-by: Manish V Badarkhe <Manish.Badarkhe@arm.com>
Change-Id: Ie060121d367ba12e3fcac5b8ff169d415a5c2bcd
2020-06-24 08:44:26 +01:00
Masahiro Yamada c452ba159c fconf: exclude fconf_dyn_cfg_getter.c from BL1_SOURCES
fconf_dyn_cfg_getter.c calls FCONF_REGISTER_POPULATOR(), which populates
the fconf_populator structure.

However, bl1/bl1.ld.S does not have:

        __FCONF_POPULATOR_START__ = .;
        KEEP(*(.fconf_populator))
        __FCONF_POPULATOR_END__ = .;

So, this is not linked to bl1.elf

We could change either bl1/bl1.lds.S or lib/fconf/fconf.mk to make
them consistent.

I chose to fix up fconf.mk to keep the current behavior.

This is a groundwork to factor out the common code from linker scripts.

Change-Id: I07b7ad4db4ec77b57acf1588fffd0b06306d7293
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2020-03-31 16:08:21 +09:00
Louis Mayencourt 25ac87940c fconf: Add dynamic config DTBs info as property
This patch introduces a better separation between the trusted-boot
related properties, and the dynamic configuration DTBs loading
information.

The dynamic configuration DTBs properties are moved to a new node:
`dtb-registry`. All the sub-nodes present will be provided to the
dynamic config framework to be loaded. The node currently only contains
the already defined configuration DTBs, but can be extended for future
features if necessary.
The dynamic config framework is modified to use the abstraction provided
by the fconf framework, instead of directly accessing the DTBs.

The trusted-boot properties are kept under the "arm,tb_fw" compatible
string, but in a separate `tb_fw-config` node.
The `tb_fw-config` property of the `dtb-registry` node simply points
to the load address of `fw_config`, as the `tb_fw-config` is currently
part of the same DTB.

Change-Id: Iceb6c4c2cb92b692b6e28dbdc9fb060f1c46de82
Signed-off-by: Louis Mayencourt <louis.mayencourt@arm.com>
2020-02-07 13:51:32 +00:00
Louis Mayencourt ab1981db9e fconf: initial commit
Introduce the Firmware CONfiguration Framework (fconf).

The fconf is an abstraction layer for platform specific data, allowing
a "property" to be queried and a value retrieved without the requesting
entity knowing what backing store is being used to hold the data.

The default backing store used is C structure. If another backing store
has to be used, the platform integrator needs to provide a "populate()"
function to fill the corresponding C structure.
The "populate()" function must be registered to the fconf framework with
the "FCONF_REGISTER_POPULATOR()". This ensures that the function would
be called inside the "fconf_populate()" function.

A two level macro is used as getter:
- the first macro takes 3 parameters and converts it to a function
  call: FCONF_GET_PROPERTY(a,b,c) -> a__b_getter(c).
- the second level defines a__b_getter(c) to the matching C structure,
  variable, array, function, etc..

Ex: Get a Chain of trust property:
    1) FCONF_GET_PROPERY(tbbr, cot, BL2_id) -> tbbr__cot_getter(BL2_id)
    2) tbbr__cot_getter(BL2_id) -> cot_desc_ptr[BL2_id]

Change-Id: Id394001353ed295bc680c3f543af0cf8da549469
Signed-off-by: Louis Mayencourt <louis.mayencourt@arm.com>
2020-02-07 13:29:09 +00:00