Commit Graph

8 Commits

Author SHA1 Message Date
davidcunado-arm 5e62327786 Merge pull request #924 from antonio-nino-diaz-arm/an/fix-xn-bit
Fix execute-never permissions in xlat tables libs
2017-05-05 09:50:34 +01:00
dp-arm 82cb2c1ad9 Use SPDX license identifiers
To make software license auditing simpler, use SPDX[0] license
identifiers instead of duplicating the license text in every file.

NOTE: Files that have been imported by FreeBSD have not been modified.

[0]: https://spdx.org/

Change-Id: I80a00e1f641b8cc075ca5a95b10607ed9ed8761a
Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
2017-05-03 09:39:28 +01:00
Antonio Nino Diaz a56402521f Fix execute-never permissions in xlat tables libs
Translation regimes that only support one virtual address space (such as
the ones for EL2 and EL3) can flag memory regions as execute-never by
setting to 1 the XN bit in the Upper Attributes field in the translation
tables descriptors. Translation regimes that support two different
virtual address spaces (such as the one shared by EL1 and EL0) use bits
PXN and UXN instead.

The Trusted Firmware runs at EL3 and EL1, it has to handle translation
tables of both translation regimes, but the previous code handled both
regimes the same way, as if both had only 1 VA range.

When trying to set a descriptor as execute-never it would set the XN
bit correctly in EL3, but it would set the XN bit in EL1 as well. XN is
at the same bit position as UXN, which means that EL0 was being
prevented from executing code at this region, not EL1 as the code
intended. Therefore, the PXN bit was unset to 0 all the time. The result
is that, in AArch64 mode, read-only data sections of BL2 weren't
protected from being executed.

This patch adds support of translation regimes with two virtual address
spaces to both versions of the translation tables library, fixing the
execute-never permissions for translation tables in EL1.

The library currently does not support initializing translation tables
for EL0 software, therefore it does not set/unset the UXN bit. If EL1
software needs to initialize translation tables for EL0 software, it
should use a different library instead.

Change-Id: If27588f9820ff42988851d90dc92801c8ecbe0c9
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
2017-05-02 15:34:01 +01:00
Antonio Nino Diaz aa61368eb5 Control inclusion of helper code used for asserts
Many asserts depend on code that is conditionally compiled based on the
DEBUG define. This patch modifies the conditional inclusion of such code
so that it is based on the ENABLE_ASSERTIONS build option.

Change-Id: I6406674788aa7e1ad7c23d86ce94482ad3c382bd
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
2017-04-20 09:59:12 +01:00
Summer Qin 5d21b037e1 Add support to change xlat_tables to non-cacheable
This patch adds an additional flag `XLAT_TABLE_NC` which marks the
translation tables as Non-cacheable for MMU accesses.

Change-Id: I7c28ab87f0ce67da237fadc3627beb6792860fd4
Signed-off-by: Summer Qin <summer.qin@arm.com>
2017-03-28 10:32:17 +01:00
Antonio Nino Diaz 0029624fe2 Add PLAT_xxx_ADDR_SPACE_SIZE definitions
Added the definitions `PLAT_PHY_ADDR_SPACE_SIZE` and
`PLAT_VIRT_ADDR_SPACE_SIZE` which specify respectively the physical
and virtual address space size a platform can use.

`ADDR_SPACE_SIZE` is now deprecated. To maintain compatibility, if any
of the previous defines aren't present, the value of `ADDR_SPACE_SIZE`
will be used instead.

For AArch64, register ID_AA64MMFR0_EL1 is checked to calculate the
max PA supported by the hardware and to verify that the previously
mentioned definition is valid. For AArch32, a 40 bit physical
address space is considered.

Added asserts to check for overflows.

Porting guide updated.

Change-Id: Ie8ce1da5967993f0c94dbd4eb9841fc03d5ef8d6
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
2016-12-13 15:35:15 +00:00
Antonio Nino Diaz e8719552a2 Automatically select initial xlation lookup level
Instead of hardcoding a level 1 table as the base translation level
table, let the code decide which level is the most appropriate given
the virtual address space size.

As the table granularity is 4 KB, this allows the code to select
level 0, 1 or 2 as base level for AArch64. This way, instead of
limiting the virtual address space width to 39-31 bits, widths of
48-25 bit can be used.

For AArch32, this change allows the code to select level 1 or 2
as the base translation level table and use virtual address space
width of 32-25 bits.

Also removed some unused definitions related to translation tables.

Fixes ARM-software/tf-issues#362

Change-Id: Ie3bb5d6d1a4730a26700b09827c79f37ca3cdb65
2016-08-23 10:51:44 +01:00
Soby Mathew b2bca61da5 AArch32: Add translation table library support
This patch adds translation library supports for AArch32 platforms.
The library only supports long descriptor formats for AArch32.
The `enable_mmu_secure()` enables the MMU for secure world with
`TTBR0` pointing to the populated translation tables.

Change-Id: I061345b1779391d098e35e7fe0c76e3ebf850e08
2016-08-10 12:35:46 +01:00