arm-trusted-firmware/services/std_svc/spm/el3_spmc/spmc_shared_mem.c

1813 lines
52 KiB
C

/*
* Copyright (c) 2022, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <common/debug.h>
#include <common/runtime_svc.h>
#include <lib/object_pool.h>
#include <lib/spinlock.h>
#include <lib/xlat_tables/xlat_tables_v2.h>
#include <services/ffa_svc.h>
#include "spmc.h"
#include "spmc_shared_mem.h"
#include <platform_def.h>
/**
* struct spmc_shmem_obj - Shared memory object.
* @desc_size: Size of @desc.
* @desc_filled: Size of @desc already received.
* @in_use: Number of clients that have called ffa_mem_retrieve_req
* without a matching ffa_mem_relinquish call.
* @desc: FF-A memory region descriptor passed in ffa_mem_share.
*/
struct spmc_shmem_obj {
size_t desc_size;
size_t desc_filled;
size_t in_use;
struct ffa_mtd desc;
};
/*
* Declare our data structure to store the metadata of memory share requests.
* The main datastore is allocated on a per platform basis to ensure enough
* storage can be made available.
* The address of the data store will be populated by the SPMC during its
* initialization.
*/
struct spmc_shmem_obj_state spmc_shmem_obj_state = {
/* Set start value for handle so top 32 bits are needed quickly. */
.next_handle = 0xffffffc0U,
};
/**
* spmc_shmem_obj_size - Convert from descriptor size to object size.
* @desc_size: Size of struct ffa_memory_region_descriptor object.
*
* Return: Size of struct spmc_shmem_obj object.
*/
static size_t spmc_shmem_obj_size(size_t desc_size)
{
return desc_size + offsetof(struct spmc_shmem_obj, desc);
}
/**
* spmc_shmem_obj_alloc - Allocate struct spmc_shmem_obj.
* @state: Global state.
* @desc_size: Size of struct ffa_memory_region_descriptor object that
* allocated object will hold.
*
* Return: Pointer to newly allocated object, or %NULL if there not enough space
* left. The returned pointer is only valid while @state is locked, to
* used it again after unlocking @state, spmc_shmem_obj_lookup must be
* called.
*/
static struct spmc_shmem_obj *
spmc_shmem_obj_alloc(struct spmc_shmem_obj_state *state, size_t desc_size)
{
struct spmc_shmem_obj *obj;
size_t free = state->data_size - state->allocated;
if (state->data == NULL) {
ERROR("Missing shmem datastore!\n");
return NULL;
}
if (spmc_shmem_obj_size(desc_size) > free) {
WARN("%s(0x%zx) failed, free 0x%zx\n",
__func__, desc_size, free);
return NULL;
}
obj = (struct spmc_shmem_obj *)(state->data + state->allocated);
obj->desc = (struct ffa_mtd) {0};
obj->desc_size = desc_size;
obj->desc_filled = 0;
obj->in_use = 0;
state->allocated += spmc_shmem_obj_size(desc_size);
return obj;
}
/**
* spmc_shmem_obj_free - Free struct spmc_shmem_obj.
* @state: Global state.
* @obj: Object to free.
*
* Release memory used by @obj. Other objects may move, so on return all
* pointers to struct spmc_shmem_obj object should be considered invalid, not
* just @obj.
*
* The current implementation always compacts the remaining objects to simplify
* the allocator and to avoid fragmentation.
*/
static void spmc_shmem_obj_free(struct spmc_shmem_obj_state *state,
struct spmc_shmem_obj *obj)
{
size_t free_size = spmc_shmem_obj_size(obj->desc_size);
uint8_t *shift_dest = (uint8_t *)obj;
uint8_t *shift_src = shift_dest + free_size;
size_t shift_size = state->allocated - (shift_src - state->data);
if (shift_size != 0U) {
memmove(shift_dest, shift_src, shift_size);
}
state->allocated -= free_size;
}
/**
* spmc_shmem_obj_lookup - Lookup struct spmc_shmem_obj by handle.
* @state: Global state.
* @handle: Unique handle of object to return.
*
* Return: struct spmc_shmem_obj_state object with handle matching @handle.
* %NULL, if not object in @state->data has a matching handle.
*/
static struct spmc_shmem_obj *
spmc_shmem_obj_lookup(struct spmc_shmem_obj_state *state, uint64_t handle)
{
uint8_t *curr = state->data;
while (curr - state->data < state->allocated) {
struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr;
if (obj->desc.handle == handle) {
return obj;
}
curr += spmc_shmem_obj_size(obj->desc_size);
}
return NULL;
}
/**
* spmc_shmem_obj_get_next - Get the next memory object from an offset.
* @offset: Offset used to track which objects have previously been
* returned.
*
* Return: the next struct spmc_shmem_obj_state object from the provided
* offset.
* %NULL, if there are no more objects.
*/
static struct spmc_shmem_obj *
spmc_shmem_obj_get_next(struct spmc_shmem_obj_state *state, size_t *offset)
{
uint8_t *curr = state->data + *offset;
if (curr - state->data < state->allocated) {
struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr;
*offset += spmc_shmem_obj_size(obj->desc_size);
return obj;
}
return NULL;
}
/*******************************************************************************
* FF-A memory descriptor helper functions.
******************************************************************************/
/**
* spmc_shmem_obj_get_emad - Get the emad from a given index depending on the
* clients FF-A version.
* @desc: The memory transaction descriptor.
* @index: The index of the emad element to be accessed.
* @ffa_version: FF-A version of the provided structure.
* @emad_size: Will be populated with the size of the returned emad
* descriptor.
* Return: A pointer to the requested emad structure.
*/
static void *
spmc_shmem_obj_get_emad(const struct ffa_mtd *desc, uint32_t index,
uint32_t ffa_version, size_t *emad_size)
{
uint8_t *emad;
/*
* If the caller is using FF-A v1.0 interpret the descriptor as a v1.0
* format, otherwise assume it is a v1.1 format.
*/
if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
/* Cast our descriptor to the v1.0 format. */
struct ffa_mtd_v1_0 *mtd_v1_0 =
(struct ffa_mtd_v1_0 *) desc;
emad = (uint8_t *) &(mtd_v1_0->emad);
*emad_size = sizeof(struct ffa_emad_v1_0);
} else {
if (!is_aligned(desc->emad_offset, 16)) {
WARN("Emad offset is not aligned.\n");
return NULL;
}
emad = ((uint8_t *) desc + desc->emad_offset);
*emad_size = desc->emad_size;
}
return (emad + (*emad_size * index));
}
/**
* spmc_shmem_obj_get_comp_mrd - Get comp_mrd from a mtd struct based on the
* FF-A version of the descriptor.
* @obj: Object containing ffa_memory_region_descriptor.
*
* Return: struct ffa_comp_mrd object corresponding to the composite memory
* region descriptor.
*/
static struct ffa_comp_mrd *
spmc_shmem_obj_get_comp_mrd(struct spmc_shmem_obj *obj, uint32_t ffa_version)
{
size_t emad_size;
/*
* The comp_mrd_offset field of the emad descriptor remains consistent
* between FF-A versions therefore we can use the v1.0 descriptor here
* in all cases.
*/
struct ffa_emad_v1_0 *emad = spmc_shmem_obj_get_emad(&obj->desc, 0,
ffa_version,
&emad_size);
/* Ensure the emad array was found. */
if (emad == NULL) {
return NULL;
}
/* Ensure the composite descriptor offset is aligned. */
if (!is_aligned(emad->comp_mrd_offset, 8)) {
WARN("Unaligned composite memory region descriptor offset.\n");
return NULL;
}
return (struct ffa_comp_mrd *)
((uint8_t *)(&obj->desc) + emad->comp_mrd_offset);
}
/**
* spmc_shmem_obj_ffa_constituent_size - Calculate variable size part of obj.
* @obj: Object containing ffa_memory_region_descriptor.
*
* Return: Size of ffa_constituent_memory_region_descriptors in @obj.
*/
static size_t
spmc_shmem_obj_ffa_constituent_size(struct spmc_shmem_obj *obj,
uint32_t ffa_version)
{
struct ffa_comp_mrd *comp_mrd;
comp_mrd = spmc_shmem_obj_get_comp_mrd(obj, ffa_version);
if (comp_mrd == NULL) {
return 0;
}
return comp_mrd->address_range_count * sizeof(struct ffa_cons_mrd);
}
/*
* Compare two memory regions to determine if any range overlaps with another
* ongoing memory transaction.
*/
static bool
overlapping_memory_regions(struct ffa_comp_mrd *region1,
struct ffa_comp_mrd *region2)
{
uint64_t region1_start;
uint64_t region1_size;
uint64_t region1_end;
uint64_t region2_start;
uint64_t region2_size;
uint64_t region2_end;
assert(region1 != NULL);
assert(region2 != NULL);
if (region1 == region2) {
return true;
}
/*
* Check each memory region in the request against existing
* transactions.
*/
for (size_t i = 0; i < region1->address_range_count; i++) {
region1_start = region1->address_range_array[i].address;
region1_size =
region1->address_range_array[i].page_count *
PAGE_SIZE_4KB;
region1_end = region1_start + region1_size;
for (size_t j = 0; j < region2->address_range_count; j++) {
region2_start = region2->address_range_array[j].address;
region2_size =
region2->address_range_array[j].page_count *
PAGE_SIZE_4KB;
region2_end = region2_start + region2_size;
if ((region1_start >= region2_start &&
region1_start < region2_end) ||
(region1_end > region2_start
&& region1_end < region2_end)) {
WARN("Overlapping mem regions 0x%lx-0x%lx & 0x%lx-0x%lx\n",
region1_start, region1_end,
region2_start, region2_end);
return true;
}
}
}
return false;
}
/*******************************************************************************
* FF-A v1.0 Memory Descriptor Conversion Helpers.
******************************************************************************/
/**
* spmc_shm_get_v1_1_descriptor_size - Calculate the required size for a v1.1
* converted descriptor.
* @orig: The original v1.0 memory transaction descriptor.
* @desc_size: The size of the original v1.0 memory transaction descriptor.
*
* Return: the size required to store the descriptor store in the v1.1 format.
*/
static size_t
spmc_shm_get_v1_1_descriptor_size(struct ffa_mtd_v1_0 *orig, size_t desc_size)
{
size_t size = 0;
struct ffa_comp_mrd *mrd;
struct ffa_emad_v1_0 *emad_array = orig->emad;
/* Get the size of the v1.1 descriptor. */
size += sizeof(struct ffa_mtd);
/* Add the size of the emad descriptors. */
size += orig->emad_count * sizeof(struct ffa_emad_v1_0);
/* Add the size of the composite mrds. */
size += sizeof(struct ffa_comp_mrd);
/* Add the size of the constituent mrds. */
mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig +
emad_array[0].comp_mrd_offset);
/* Check the calculated address is within the memory descriptor. */
if ((uintptr_t) mrd >= (uintptr_t)((uint8_t *) orig + desc_size)) {
return 0;
}
size += mrd->address_range_count * sizeof(struct ffa_cons_mrd);
return size;
}
/**
* spmc_shm_get_v1_0_descriptor_size - Calculate the required size for a v1.0
* converted descriptor.
* @orig: The original v1.1 memory transaction descriptor.
* @desc_size: The size of the original v1.1 memory transaction descriptor.
*
* Return: the size required to store the descriptor store in the v1.0 format.
*/
static size_t
spmc_shm_get_v1_0_descriptor_size(struct ffa_mtd *orig, size_t desc_size)
{
size_t size = 0;
struct ffa_comp_mrd *mrd;
struct ffa_emad_v1_0 *emad_array = (struct ffa_emad_v1_0 *)
((uint8_t *) orig +
orig->emad_offset);
/* Get the size of the v1.0 descriptor. */
size += sizeof(struct ffa_mtd_v1_0);
/* Add the size of the v1.0 emad descriptors. */
size += orig->emad_count * sizeof(struct ffa_emad_v1_0);
/* Add the size of the composite mrds. */
size += sizeof(struct ffa_comp_mrd);
/* Add the size of the constituent mrds. */
mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig +
emad_array[0].comp_mrd_offset);
/* Check the calculated address is within the memory descriptor. */
if ((uintptr_t) mrd >= (uintptr_t)((uint8_t *) orig + desc_size)) {
return 0;
}
size += mrd->address_range_count * sizeof(struct ffa_cons_mrd);
return size;
}
/**
* spmc_shm_convert_shmem_obj_from_v1_0 - Converts a given v1.0 memory object.
* @out_obj: The shared memory object to populate the converted descriptor.
* @orig: The shared memory object containing the v1.0 descriptor.
*
* Return: true if the conversion is successful else false.
*/
static bool
spmc_shm_convert_shmem_obj_from_v1_0(struct spmc_shmem_obj *out_obj,
struct spmc_shmem_obj *orig)
{
struct ffa_mtd_v1_0 *mtd_orig = (struct ffa_mtd_v1_0 *) &orig->desc;
struct ffa_mtd *out = &out_obj->desc;
struct ffa_emad_v1_0 *emad_array_in;
struct ffa_emad_v1_0 *emad_array_out;
struct ffa_comp_mrd *mrd_in;
struct ffa_comp_mrd *mrd_out;
size_t mrd_in_offset;
size_t mrd_out_offset;
size_t mrd_size = 0;
/* Populate the new descriptor format from the v1.0 struct. */
out->sender_id = mtd_orig->sender_id;
out->memory_region_attributes = mtd_orig->memory_region_attributes;
out->flags = mtd_orig->flags;
out->handle = mtd_orig->handle;
out->tag = mtd_orig->tag;
out->emad_count = mtd_orig->emad_count;
out->emad_size = sizeof(struct ffa_emad_v1_0);
/*
* We will locate the emad descriptors directly after the ffa_mtd
* struct. This will be 8-byte aligned.
*/
out->emad_offset = sizeof(struct ffa_mtd);
emad_array_in = mtd_orig->emad;
emad_array_out = (struct ffa_emad_v1_0 *)
((uint8_t *) out + out->emad_offset);
/* Copy across the emad structs. */
for (unsigned int i = 0U; i < out->emad_count; i++) {
memcpy(&emad_array_out[i], &emad_array_in[i],
sizeof(struct ffa_emad_v1_0));
}
/* Place the mrd descriptors after the end of the emad descriptors.*/
mrd_in_offset = emad_array_in->comp_mrd_offset;
mrd_out_offset = out->emad_offset + (out->emad_size * out->emad_count);
mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset);
/* Add the size of the composite memory region descriptor. */
mrd_size += sizeof(struct ffa_comp_mrd);
/* Find the mrd descriptor. */
mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset);
/* Add the size of the constituent memory region descriptors. */
mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd);
/*
* Update the offset in the emads by the delta between the input and
* output addresses.
*/
for (unsigned int i = 0U; i < out->emad_count; i++) {
emad_array_out[i].comp_mrd_offset =
emad_array_in[i].comp_mrd_offset +
(mrd_out_offset - mrd_in_offset);
}
/* Verify that we stay within bound of the memory descriptors. */
if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) >
(uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) ||
((uintptr_t)((uint8_t *) mrd_out + mrd_size) >
(uintptr_t)((uint8_t *) out + out_obj->desc_size))) {
ERROR("%s: Invalid mrd structure.\n", __func__);
return false;
}
/* Copy the mrd descriptors directly. */
memcpy(mrd_out, mrd_in, mrd_size);
return true;
}
/**
* spmc_shm_convert_mtd_to_v1_0 - Converts a given v1.1 memory object to
* v1.0 memory object.
* @out_obj: The shared memory object to populate the v1.0 descriptor.
* @orig: The shared memory object containing the v1.1 descriptor.
*
* Return: true if the conversion is successful else false.
*/
static bool
spmc_shm_convert_mtd_to_v1_0(struct spmc_shmem_obj *out_obj,
struct spmc_shmem_obj *orig)
{
struct ffa_mtd *mtd_orig = &orig->desc;
struct ffa_mtd_v1_0 *out = (struct ffa_mtd_v1_0 *) &out_obj->desc;
struct ffa_emad_v1_0 *emad_in;
struct ffa_emad_v1_0 *emad_array_in;
struct ffa_emad_v1_0 *emad_array_out;
struct ffa_comp_mrd *mrd_in;
struct ffa_comp_mrd *mrd_out;
size_t mrd_in_offset;
size_t mrd_out_offset;
size_t emad_out_array_size;
size_t mrd_size = 0;
/* Populate the v1.0 descriptor format from the v1.1 struct. */
out->sender_id = mtd_orig->sender_id;
out->memory_region_attributes = mtd_orig->memory_region_attributes;
out->flags = mtd_orig->flags;
out->handle = mtd_orig->handle;
out->tag = mtd_orig->tag;
out->emad_count = mtd_orig->emad_count;
/* Determine the location of the emad array in both descriptors. */
emad_array_in = (struct ffa_emad_v1_0 *)
((uint8_t *) mtd_orig + mtd_orig->emad_offset);
emad_array_out = out->emad;
/* Copy across the emad structs. */
emad_in = emad_array_in;
for (unsigned int i = 0U; i < out->emad_count; i++) {
memcpy(&emad_array_out[i], emad_in,
sizeof(struct ffa_emad_v1_0));
emad_in += mtd_orig->emad_size;
}
/* Place the mrd descriptors after the end of the emad descriptors. */
emad_out_array_size = sizeof(struct ffa_emad_v1_0) * out->emad_count;
mrd_out_offset = (uint8_t *) out->emad - (uint8_t *) out +
emad_out_array_size;
mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset);
mrd_in_offset = mtd_orig->emad_offset +
(mtd_orig->emad_size * mtd_orig->emad_count);
/* Add the size of the composite memory region descriptor. */
mrd_size += sizeof(struct ffa_comp_mrd);
/* Find the mrd descriptor. */
mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset);
/* Add the size of the constituent memory region descriptors. */
mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd);
/*
* Update the offset in the emads by the delta between the input and
* output addresses.
*/
emad_in = emad_array_in;
for (unsigned int i = 0U; i < out->emad_count; i++) {
emad_array_out[i].comp_mrd_offset = emad_in->comp_mrd_offset +
(mrd_out_offset -
mrd_in_offset);
emad_in += mtd_orig->emad_size;
}
/* Verify that we stay within bound of the memory descriptors. */
if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) >
(uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) ||
((uintptr_t)((uint8_t *) mrd_out + mrd_size) >
(uintptr_t)((uint8_t *) out + out_obj->desc_size))) {
ERROR("%s: Invalid mrd structure.\n", __func__);
return false;
}
/* Copy the mrd descriptors directly. */
memcpy(mrd_out, mrd_in, mrd_size);
return true;
}
/**
* spmc_populate_ffa_v1_0_descriptor - Converts a given v1.1 memory object to
* the v1.0 format and populates the
* provided buffer.
* @dst: Buffer to populate v1.0 ffa_memory_region_descriptor.
* @orig_obj: Object containing v1.1 ffa_memory_region_descriptor.
* @buf_size: Size of the buffer to populate.
* @offset: The offset of the converted descriptor to copy.
* @copy_size: Will be populated with the number of bytes copied.
* @out_desc_size: Will be populated with the total size of the v1.0
* descriptor.
*
* Return: 0 if conversion and population succeeded.
* Note: This function invalidates the reference to @orig therefore
* `spmc_shmem_obj_lookup` must be called if further usage is required.
*/
static uint32_t
spmc_populate_ffa_v1_0_descriptor(void *dst, struct spmc_shmem_obj *orig_obj,
size_t buf_size, size_t offset,
size_t *copy_size, size_t *v1_0_desc_size)
{
struct spmc_shmem_obj *v1_0_obj;
/* Calculate the size that the v1.0 descriptor will require. */
*v1_0_desc_size = spmc_shm_get_v1_0_descriptor_size(
&orig_obj->desc, orig_obj->desc_size);
if (*v1_0_desc_size == 0) {
ERROR("%s: cannot determine size of descriptor.\n",
__func__);
return FFA_ERROR_INVALID_PARAMETER;
}
/* Get a new obj to store the v1.0 descriptor. */
v1_0_obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state,
*v1_0_desc_size);
if (!v1_0_obj) {
return FFA_ERROR_NO_MEMORY;
}
/* Perform the conversion from v1.1 to v1.0. */
if (!spmc_shm_convert_mtd_to_v1_0(v1_0_obj, orig_obj)) {
spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj);
return FFA_ERROR_INVALID_PARAMETER;
}
*copy_size = MIN(v1_0_obj->desc_size - offset, buf_size);
memcpy(dst, (uint8_t *) &v1_0_obj->desc + offset, *copy_size);
/*
* We're finished with the v1.0 descriptor for now so free it.
* Note that this will invalidate any references to the v1.1
* descriptor.
*/
spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj);
return 0;
}
/**
* spmc_shmem_check_obj - Check that counts in descriptor match overall size.
* @obj: Object containing ffa_memory_region_descriptor.
* @ffa_version: FF-A version of the provided descriptor.
*
* Return: 0 if object is valid, -EINVAL if constituent_memory_region_descriptor
* offset or count is invalid.
*/
static int spmc_shmem_check_obj(struct spmc_shmem_obj *obj,
uint32_t ffa_version)
{
uint32_t comp_mrd_offset = 0;
if (obj->desc.emad_count == 0U) {
WARN("%s: unsupported attribute desc count %u.\n",
__func__, obj->desc.emad_count);
return -EINVAL;
}
for (size_t emad_num = 0; emad_num < obj->desc.emad_count; emad_num++) {
size_t size;
size_t count;
size_t expected_size;
size_t total_page_count;
size_t emad_size;
size_t desc_size;
size_t header_emad_size;
uint32_t offset;
struct ffa_comp_mrd *comp;
struct ffa_emad_v1_0 *emad;
emad = spmc_shmem_obj_get_emad(&obj->desc, emad_num,
ffa_version, &emad_size);
if (emad == NULL) {
WARN("%s: invalid emad structure.\n", __func__);
return -EINVAL;
}
/*
* Validate the calculated emad address resides within the
* descriptor.
*/
if ((uintptr_t) emad >=
(uintptr_t)((uint8_t *) &obj->desc + obj->desc_size)) {
WARN("Invalid emad access.\n");
return -EINVAL;
}
offset = emad->comp_mrd_offset;
if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
desc_size = sizeof(struct ffa_mtd_v1_0);
} else {
desc_size = sizeof(struct ffa_mtd);
}
header_emad_size = desc_size +
(obj->desc.emad_count * emad_size);
if (offset < header_emad_size) {
WARN("%s: invalid object, offset %u < header + emad %zu\n",
__func__, offset, header_emad_size);
return -EINVAL;
}
size = obj->desc_size;
if (offset > size) {
WARN("%s: invalid object, offset %u > total size %zu\n",
__func__, offset, obj->desc_size);
return -EINVAL;
}
size -= offset;
if (size < sizeof(struct ffa_comp_mrd)) {
WARN("%s: invalid object, offset %u, total size %zu, no header space.\n",
__func__, offset, obj->desc_size);
return -EINVAL;
}
size -= sizeof(struct ffa_comp_mrd);
count = size / sizeof(struct ffa_cons_mrd);
comp = spmc_shmem_obj_get_comp_mrd(obj, ffa_version);
if (comp == NULL) {
WARN("%s: invalid comp_mrd offset\n", __func__);
return -EINVAL;
}
if (comp->address_range_count != count) {
WARN("%s: invalid object, desc count %u != %zu\n",
__func__, comp->address_range_count, count);
return -EINVAL;
}
expected_size = offset + sizeof(*comp) +
spmc_shmem_obj_ffa_constituent_size(obj,
ffa_version);
if (expected_size != obj->desc_size) {
WARN("%s: invalid object, computed size %zu != size %zu\n",
__func__, expected_size, obj->desc_size);
return -EINVAL;
}
if (obj->desc_filled < obj->desc_size) {
/*
* The whole descriptor has not yet been received.
* Skip final checks.
*/
return 0;
}
/*
* The offset provided to the composite memory region descriptor
* should be consistent across endpoint descriptors. Store the
* first entry and compare against subsequent entries.
*/
if (comp_mrd_offset == 0) {
comp_mrd_offset = offset;
} else {
if (comp_mrd_offset != offset) {
ERROR("%s: mismatching offsets provided, %u != %u\n",
__func__, offset, comp_mrd_offset);
return -EINVAL;
}
}
total_page_count = 0;
for (size_t i = 0; i < count; i++) {
total_page_count +=
comp->address_range_array[i].page_count;
}
if (comp->total_page_count != total_page_count) {
WARN("%s: invalid object, desc total_page_count %u != %zu\n",
__func__, comp->total_page_count,
total_page_count);
return -EINVAL;
}
}
return 0;
}
/**
* spmc_shmem_check_state_obj - Check if the descriptor describes memory
* regions that are currently involved with an
* existing memory transactions. This implies that
* the memory is not in a valid state for lending.
* @obj: Object containing ffa_memory_region_descriptor.
*
* Return: 0 if object is valid, -EINVAL if invalid memory state.
*/
static int spmc_shmem_check_state_obj(struct spmc_shmem_obj *obj,
uint32_t ffa_version)
{
size_t obj_offset = 0;
struct spmc_shmem_obj *inflight_obj;
struct ffa_comp_mrd *other_mrd;
struct ffa_comp_mrd *requested_mrd = spmc_shmem_obj_get_comp_mrd(obj,
ffa_version);
if (requested_mrd == NULL) {
return -EINVAL;
}
inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state,
&obj_offset);
while (inflight_obj != NULL) {
/*
* Don't compare the transaction to itself or to partially
* transmitted descriptors.
*/
if ((obj->desc.handle != inflight_obj->desc.handle) &&
(obj->desc_size == obj->desc_filled)) {
other_mrd = spmc_shmem_obj_get_comp_mrd(inflight_obj,
ffa_version);
if (other_mrd == NULL) {
return -EINVAL;
}
if (overlapping_memory_regions(requested_mrd,
other_mrd)) {
return -EINVAL;
}
}
inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state,
&obj_offset);
}
return 0;
}
static long spmc_ffa_fill_desc(struct mailbox *mbox,
struct spmc_shmem_obj *obj,
uint32_t fragment_length,
ffa_mtd_flag32_t mtd_flag,
uint32_t ffa_version,
void *smc_handle)
{
int ret;
size_t emad_size;
uint32_t handle_low;
uint32_t handle_high;
struct ffa_emad_v1_0 *emad;
struct ffa_emad_v1_0 *other_emad;
if (mbox->rxtx_page_count == 0U) {
WARN("%s: buffer pair not registered.\n", __func__);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_arg;
}
if (fragment_length > mbox->rxtx_page_count * PAGE_SIZE_4KB) {
WARN("%s: bad fragment size %u > %u buffer size\n", __func__,
fragment_length, mbox->rxtx_page_count * PAGE_SIZE_4KB);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_arg;
}
memcpy((uint8_t *)&obj->desc + obj->desc_filled,
(uint8_t *) mbox->tx_buffer, fragment_length);
if (fragment_length > obj->desc_size - obj->desc_filled) {
WARN("%s: bad fragment size %u > %zu remaining\n", __func__,
fragment_length, obj->desc_size - obj->desc_filled);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_arg;
}
/* Ensure that the sender ID resides in the normal world. */
if (ffa_is_secure_world_id(obj->desc.sender_id)) {
WARN("%s: Invalid sender ID 0x%x.\n",
__func__, obj->desc.sender_id);
ret = FFA_ERROR_DENIED;
goto err_arg;
}
/* Ensure the NS bit is set to 0. */
if ((obj->desc.memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) {
WARN("%s: NS mem attributes flags MBZ.\n", __func__);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_arg;
}
/*
* We don't currently support any optional flags so ensure none are
* requested.
*/
if (obj->desc.flags != 0U && mtd_flag != 0U &&
(obj->desc.flags != mtd_flag)) {
WARN("%s: invalid memory transaction flags %u != %u\n",
__func__, obj->desc.flags, mtd_flag);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_arg;
}
if (obj->desc_filled == 0U) {
/* First fragment, descriptor header has been copied */
obj->desc.handle = spmc_shmem_obj_state.next_handle++;
obj->desc.flags |= mtd_flag;
}
obj->desc_filled += fragment_length;
ret = spmc_shmem_check_obj(obj, ffa_version);
if (ret != 0) {
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_bad_desc;
}
handle_low = (uint32_t)obj->desc.handle;
handle_high = obj->desc.handle >> 32;
if (obj->desc_filled != obj->desc_size) {
SMC_RET8(smc_handle, FFA_MEM_FRAG_RX, handle_low,
handle_high, obj->desc_filled,
(uint32_t)obj->desc.sender_id << 16, 0, 0, 0);
}
/* The full descriptor has been received, perform any final checks. */
/*
* If a partition ID resides in the secure world validate that the
* partition ID is for a known partition. Ignore any partition ID
* belonging to the normal world as it is assumed the Hypervisor will
* have validated these.
*/
for (size_t i = 0; i < obj->desc.emad_count; i++) {
emad = spmc_shmem_obj_get_emad(&obj->desc, i, ffa_version,
&emad_size);
if (emad == NULL) {
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_bad_desc;
}
ffa_endpoint_id16_t ep_id = emad->mapd.endpoint_id;
if (ffa_is_secure_world_id(ep_id)) {
if (spmc_get_sp_ctx(ep_id) == NULL) {
WARN("%s: Invalid receiver id 0x%x\n",
__func__, ep_id);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_bad_desc;
}
}
}
/* Ensure partition IDs are not duplicated. */
for (size_t i = 0; i < obj->desc.emad_count; i++) {
emad = spmc_shmem_obj_get_emad(&obj->desc, i, ffa_version,
&emad_size);
if (emad == NULL) {
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_bad_desc;
}
for (size_t j = i + 1; j < obj->desc.emad_count; j++) {
other_emad = spmc_shmem_obj_get_emad(&obj->desc, j,
ffa_version,
&emad_size);
if (other_emad == NULL) {
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_bad_desc;
}
if (emad->mapd.endpoint_id ==
other_emad->mapd.endpoint_id) {
WARN("%s: Duplicated endpoint id 0x%x\n",
__func__, emad->mapd.endpoint_id);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_bad_desc;
}
}
}
ret = spmc_shmem_check_state_obj(obj, ffa_version);
if (ret) {
ERROR("%s: invalid memory region descriptor.\n", __func__);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_bad_desc;
}
/*
* Everything checks out, if the sender was using FF-A v1.0, convert
* the descriptor format to use the v1.1 structures.
*/
if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
struct spmc_shmem_obj *v1_1_obj;
uint64_t mem_handle;
/* Calculate the size that the v1.1 descriptor will required. */
size_t v1_1_desc_size =
spmc_shm_get_v1_1_descriptor_size((void *) &obj->desc,
fragment_length);
if (v1_1_desc_size == 0U) {
ERROR("%s: cannot determine size of descriptor.\n",
__func__);
goto err_arg;
}
/* Get a new obj to store the v1.1 descriptor. */
v1_1_obj =
spmc_shmem_obj_alloc(&spmc_shmem_obj_state, v1_1_desc_size);
if (!obj) {
ret = FFA_ERROR_NO_MEMORY;
goto err_arg;
}
/* Perform the conversion from v1.0 to v1.1. */
v1_1_obj->desc_size = v1_1_desc_size;
v1_1_obj->desc_filled = v1_1_desc_size;
if (!spmc_shm_convert_shmem_obj_from_v1_0(v1_1_obj, obj)) {
ERROR("%s: Could not convert mtd!\n", __func__);
spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_1_obj);
goto err_arg;
}
/*
* We're finished with the v1.0 descriptor so free it
* and continue our checks with the new v1.1 descriptor.
*/
mem_handle = obj->desc.handle;
spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
if (obj == NULL) {
ERROR("%s: Failed to find converted descriptor.\n",
__func__);
ret = FFA_ERROR_INVALID_PARAMETER;
return spmc_ffa_error_return(smc_handle, ret);
}
}
/* Allow for platform specific operations to be performed. */
ret = plat_spmc_shmem_begin(&obj->desc);
if (ret != 0) {
goto err_arg;
}
SMC_RET8(smc_handle, FFA_SUCCESS_SMC32, 0, handle_low, handle_high, 0,
0, 0, 0);
err_bad_desc:
err_arg:
spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
return spmc_ffa_error_return(smc_handle, ret);
}
/**
* spmc_ffa_mem_send - FFA_MEM_SHARE/LEND implementation.
* @client: Client state.
* @total_length: Total length of shared memory descriptor.
* @fragment_length: Length of fragment of shared memory descriptor passed in
* this call.
* @address: Not supported, must be 0.
* @page_count: Not supported, must be 0.
* @smc_handle: Handle passed to smc call. Used to return
* FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS.
*
* Implements a subset of the FF-A FFA_MEM_SHARE and FFA_MEM_LEND calls needed
* to share or lend memory from non-secure os to secure os (with no stream
* endpoints).
*
* Return: 0 on success, error code on failure.
*/
long spmc_ffa_mem_send(uint32_t smc_fid,
bool secure_origin,
uint64_t total_length,
uint32_t fragment_length,
uint64_t address,
uint32_t page_count,
void *cookie,
void *handle,
uint64_t flags)
{
long ret;
struct spmc_shmem_obj *obj;
struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
ffa_mtd_flag32_t mtd_flag;
uint32_t ffa_version = get_partition_ffa_version(secure_origin);
if (address != 0U || page_count != 0U) {
WARN("%s: custom memory region for message not supported.\n",
__func__);
return spmc_ffa_error_return(handle,
FFA_ERROR_INVALID_PARAMETER);
}
if (secure_origin) {
WARN("%s: unsupported share direction.\n", __func__);
return spmc_ffa_error_return(handle,
FFA_ERROR_INVALID_PARAMETER);
}
/*
* Check if the descriptor is smaller than the v1.0 descriptor. The
* descriptor cannot be smaller than this structure.
*/
if (fragment_length < sizeof(struct ffa_mtd_v1_0)) {
WARN("%s: bad first fragment size %u < %zu\n",
__func__, fragment_length, sizeof(struct ffa_mtd_v1_0));
return spmc_ffa_error_return(handle,
FFA_ERROR_INVALID_PARAMETER);
}
if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_SHARE) {
mtd_flag = FFA_MTD_FLAG_TYPE_SHARE_MEMORY;
} else if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_LEND) {
mtd_flag = FFA_MTD_FLAG_TYPE_LEND_MEMORY;
} else {
WARN("%s: invalid memory management operation.\n", __func__);
return spmc_ffa_error_return(handle,
FFA_ERROR_INVALID_PARAMETER);
}
spin_lock(&spmc_shmem_obj_state.lock);
obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, total_length);
if (obj == NULL) {
ret = FFA_ERROR_NO_MEMORY;
goto err_unlock;
}
spin_lock(&mbox->lock);
ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, mtd_flag,
ffa_version, handle);
spin_unlock(&mbox->lock);
spin_unlock(&spmc_shmem_obj_state.lock);
return ret;
err_unlock:
spin_unlock(&spmc_shmem_obj_state.lock);
return spmc_ffa_error_return(handle, ret);
}
/**
* spmc_ffa_mem_frag_tx - FFA_MEM_FRAG_TX implementation.
* @client: Client state.
* @handle_low: Handle_low value returned from FFA_MEM_FRAG_RX.
* @handle_high: Handle_high value returned from FFA_MEM_FRAG_RX.
* @fragment_length: Length of fragments transmitted.
* @sender_id: Vmid of sender in bits [31:16]
* @smc_handle: Handle passed to smc call. Used to return
* FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS.
*
* Return: @smc_handle on success, error code on failure.
*/
long spmc_ffa_mem_frag_tx(uint32_t smc_fid,
bool secure_origin,
uint64_t handle_low,
uint64_t handle_high,
uint32_t fragment_length,
uint32_t sender_id,
void *cookie,
void *handle,
uint64_t flags)
{
long ret;
uint32_t desc_sender_id;
uint32_t ffa_version = get_partition_ffa_version(secure_origin);
struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
struct spmc_shmem_obj *obj;
uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
spin_lock(&spmc_shmem_obj_state.lock);
obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
if (obj == NULL) {
WARN("%s: invalid handle, 0x%lx, not a valid handle.\n",
__func__, mem_handle);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_unlock;
}
desc_sender_id = (uint32_t)obj->desc.sender_id << 16;
if (sender_id != desc_sender_id) {
WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__,
sender_id, desc_sender_id);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_unlock;
}
if (obj->desc_filled == obj->desc_size) {
WARN("%s: object desc already filled, %zu\n", __func__,
obj->desc_filled);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_unlock;
}
spin_lock(&mbox->lock);
ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, 0, ffa_version,
handle);
spin_unlock(&mbox->lock);
spin_unlock(&spmc_shmem_obj_state.lock);
return ret;
err_unlock:
spin_unlock(&spmc_shmem_obj_state.lock);
return spmc_ffa_error_return(handle, ret);
}
/**
* spmc_ffa_mem_retrieve_set_ns_bit - Set the NS bit in the response descriptor
* if the caller implements a version greater
* than FF-A 1.0 or if they have requested
* the functionality.
* TODO: We are assuming that the caller is
* an SP. To support retrieval from the
* normal world this function will need to be
* expanded accordingly.
* @resp: Descriptor populated in callers RX buffer.
* @sp_ctx: Context of the calling SP.
*/
void spmc_ffa_mem_retrieve_set_ns_bit(struct ffa_mtd *resp,
struct secure_partition_desc *sp_ctx)
{
if (sp_ctx->ffa_version > MAKE_FFA_VERSION(1, 0) ||
sp_ctx->ns_bit_requested) {
/*
* Currently memory senders must reside in the normal
* world, and we do not have the functionlaity to change
* the state of memory dynamically. Therefore we can always set
* the NS bit to 1.
*/
resp->memory_region_attributes |= FFA_MEM_ATTR_NS_BIT;
}
}
/**
* spmc_ffa_mem_retrieve_req - FFA_MEM_RETRIEVE_REQ implementation.
* @smc_fid: FID of SMC
* @total_length: Total length of retrieve request descriptor if this is
* the first call. Otherwise (unsupported) must be 0.
* @fragment_length: Length of fragment of retrieve request descriptor passed
* in this call. Only @fragment_length == @length is
* supported by this implementation.
* @address: Not supported, must be 0.
* @page_count: Not supported, must be 0.
* @smc_handle: Handle passed to smc call. Used to return
* FFA_MEM_RETRIEVE_RESP.
*
* Implements a subset of the FF-A FFA_MEM_RETRIEVE_REQ call.
* Used by secure os to retrieve memory already shared by non-secure os.
* If the data does not fit in a single FFA_MEM_RETRIEVE_RESP message,
* the client must call FFA_MEM_FRAG_RX until the full response has been
* received.
*
* Return: @handle on success, error code on failure.
*/
long
spmc_ffa_mem_retrieve_req(uint32_t smc_fid,
bool secure_origin,
uint32_t total_length,
uint32_t fragment_length,
uint64_t address,
uint32_t page_count,
void *cookie,
void *handle,
uint64_t flags)
{
int ret;
size_t buf_size;
size_t copy_size = 0;
size_t min_desc_size;
size_t out_desc_size = 0;
/*
* Currently we are only accessing fields that are the same in both the
* v1.0 and v1.1 mtd struct therefore we can use a v1.1 struct directly
* here. We only need validate against the appropriate struct size.
*/
struct ffa_mtd *resp;
const struct ffa_mtd *req;
struct spmc_shmem_obj *obj = NULL;
struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
uint32_t ffa_version = get_partition_ffa_version(secure_origin);
struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx();
if (!secure_origin) {
WARN("%s: unsupported retrieve req direction.\n", __func__);
return spmc_ffa_error_return(handle,
FFA_ERROR_INVALID_PARAMETER);
}
if (address != 0U || page_count != 0U) {
WARN("%s: custom memory region not supported.\n", __func__);
return spmc_ffa_error_return(handle,
FFA_ERROR_INVALID_PARAMETER);
}
spin_lock(&mbox->lock);
req = mbox->tx_buffer;
resp = mbox->rx_buffer;
buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
if (mbox->rxtx_page_count == 0U) {
WARN("%s: buffer pair not registered.\n", __func__);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_unlock_mailbox;
}
if (mbox->state != MAILBOX_STATE_EMPTY) {
WARN("%s: RX Buffer is full! %d\n", __func__, mbox->state);
ret = FFA_ERROR_DENIED;
goto err_unlock_mailbox;
}
if (fragment_length != total_length) {
WARN("%s: fragmented retrieve request not supported.\n",
__func__);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_unlock_mailbox;
}
if (req->emad_count == 0U) {
WARN("%s: unsupported attribute desc count %u.\n",
__func__, obj->desc.emad_count);
return -EINVAL;
}
/* Determine the appropriate minimum descriptor size. */
if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
min_desc_size = sizeof(struct ffa_mtd_v1_0);
} else {
min_desc_size = sizeof(struct ffa_mtd);
}
if (total_length < min_desc_size) {
WARN("%s: invalid length %u < %zu\n", __func__, total_length,
min_desc_size);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_unlock_mailbox;
}
spin_lock(&spmc_shmem_obj_state.lock);
obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle);
if (obj == NULL) {
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_unlock_all;
}
if (obj->desc_filled != obj->desc_size) {
WARN("%s: incomplete object desc filled %zu < size %zu\n",
__func__, obj->desc_filled, obj->desc_size);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_unlock_all;
}
if (req->emad_count != 0U && req->sender_id != obj->desc.sender_id) {
WARN("%s: wrong sender id 0x%x != 0x%x\n",
__func__, req->sender_id, obj->desc.sender_id);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_unlock_all;
}
if (req->emad_count != 0U && req->tag != obj->desc.tag) {
WARN("%s: wrong tag 0x%lx != 0x%lx\n",
__func__, req->tag, obj->desc.tag);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_unlock_all;
}
if (req->emad_count != 0U && req->emad_count != obj->desc.emad_count) {
WARN("%s: mistmatch of endpoint counts %u != %u\n",
__func__, req->emad_count, obj->desc.emad_count);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_unlock_all;
}
/* Ensure the NS bit is set to 0 in the request. */
if ((req->memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) {
WARN("%s: NS mem attributes flags MBZ.\n", __func__);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_unlock_all;
}
if (req->flags != 0U) {
if ((req->flags & FFA_MTD_FLAG_TYPE_MASK) !=
(obj->desc.flags & FFA_MTD_FLAG_TYPE_MASK)) {
/*
* If the retrieve request specifies the memory
* transaction ensure it matches what we expect.
*/
WARN("%s: wrong mem transaction flags %x != %x\n",
__func__, req->flags, obj->desc.flags);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_unlock_all;
}
if (req->flags != FFA_MTD_FLAG_TYPE_SHARE_MEMORY &&
req->flags != FFA_MTD_FLAG_TYPE_LEND_MEMORY) {
/*
* Current implementation does not support donate and
* it supports no other flags.
*/
WARN("%s: invalid flags 0x%x\n", __func__, req->flags);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_unlock_all;
}
}
/* Validate that the provided emad offset and structure is valid.*/
for (size_t i = 0; i < req->emad_count; i++) {
size_t emad_size;
struct ffa_emad_v1_0 *emad;
emad = spmc_shmem_obj_get_emad(req, i, ffa_version,
&emad_size);
if (emad == NULL) {
WARN("%s: invalid emad structure.\n", __func__);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_unlock_all;
}
if ((uintptr_t) emad >= (uintptr_t)
((uint8_t *) req + total_length)) {
WARN("Invalid emad access.\n");
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_unlock_all;
}
}
/*
* Validate all the endpoints match in the case of multiple
* borrowers. We don't mandate that the order of the borrowers
* must match in the descriptors therefore check to see if the
* endpoints match in any order.
*/
for (size_t i = 0; i < req->emad_count; i++) {
bool found = false;
size_t emad_size;
struct ffa_emad_v1_0 *emad;
struct ffa_emad_v1_0 *other_emad;
emad = spmc_shmem_obj_get_emad(req, i, ffa_version,
&emad_size);
if (emad == NULL) {
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_unlock_all;
}
for (size_t j = 0; j < obj->desc.emad_count; j++) {
other_emad = spmc_shmem_obj_get_emad(
&obj->desc, j, MAKE_FFA_VERSION(1, 1),
&emad_size);
if (other_emad == NULL) {
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_unlock_all;
}
if (req->emad_count &&
emad->mapd.endpoint_id ==
other_emad->mapd.endpoint_id) {
found = true;
break;
}
}
if (!found) {
WARN("%s: invalid receiver id (0x%x).\n",
__func__, emad->mapd.endpoint_id);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_unlock_all;
}
}
mbox->state = MAILBOX_STATE_FULL;
if (req->emad_count != 0U) {
obj->in_use++;
}
/*
* If the caller is v1.0 convert the descriptor, otherwise copy
* directly.
*/
if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
ret = spmc_populate_ffa_v1_0_descriptor(resp, obj, buf_size, 0,
&copy_size,
&out_desc_size);
if (ret != 0U) {
ERROR("%s: Failed to process descriptor.\n", __func__);
goto err_unlock_all;
}
} else {
copy_size = MIN(obj->desc_size, buf_size);
out_desc_size = obj->desc_size;
memcpy(resp, &obj->desc, copy_size);
}
/* Set the NS bit in the response if applicable. */
spmc_ffa_mem_retrieve_set_ns_bit(resp, sp_ctx);
spin_unlock(&spmc_shmem_obj_state.lock);
spin_unlock(&mbox->lock);
SMC_RET8(handle, FFA_MEM_RETRIEVE_RESP, out_desc_size,
copy_size, 0, 0, 0, 0, 0);
err_unlock_all:
spin_unlock(&spmc_shmem_obj_state.lock);
err_unlock_mailbox:
spin_unlock(&mbox->lock);
return spmc_ffa_error_return(handle, ret);
}
/**
* spmc_ffa_mem_frag_rx - FFA_MEM_FRAG_RX implementation.
* @client: Client state.
* @handle_low: Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[31:0].
* @handle_high: Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[63:32].
* @fragment_offset: Byte offset in descriptor to resume at.
* @sender_id: Bit[31:16]: Endpoint id of sender if client is a
* hypervisor. 0 otherwise.
* @smc_handle: Handle passed to smc call. Used to return
* FFA_MEM_FRAG_TX.
*
* Return: @smc_handle on success, error code on failure.
*/
long spmc_ffa_mem_frag_rx(uint32_t smc_fid,
bool secure_origin,
uint32_t handle_low,
uint32_t handle_high,
uint32_t fragment_offset,
uint32_t sender_id,
void *cookie,
void *handle,
uint64_t flags)
{
int ret;
void *src;
size_t buf_size;
size_t copy_size;
size_t full_copy_size;
uint32_t desc_sender_id;
struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
struct spmc_shmem_obj *obj;
uint32_t ffa_version = get_partition_ffa_version(secure_origin);
if (!secure_origin) {
WARN("%s: can only be called from swld.\n",
__func__);
return spmc_ffa_error_return(handle,
FFA_ERROR_INVALID_PARAMETER);
}
spin_lock(&spmc_shmem_obj_state.lock);
obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
if (obj == NULL) {
WARN("%s: invalid handle, 0x%lx, not a valid handle.\n",
__func__, mem_handle);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_unlock_shmem;
}
desc_sender_id = (uint32_t)obj->desc.sender_id << 16;
if (sender_id != 0U && sender_id != desc_sender_id) {
WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__,
sender_id, desc_sender_id);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_unlock_shmem;
}
if (fragment_offset >= obj->desc_size) {
WARN("%s: invalid fragment_offset 0x%x >= 0x%zx\n",
__func__, fragment_offset, obj->desc_size);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_unlock_shmem;
}
spin_lock(&mbox->lock);
if (mbox->rxtx_page_count == 0U) {
WARN("%s: buffer pair not registered.\n", __func__);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_unlock_all;
}
if (mbox->state != MAILBOX_STATE_EMPTY) {
WARN("%s: RX Buffer is full!\n", __func__);
ret = FFA_ERROR_DENIED;
goto err_unlock_all;
}
buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
mbox->state = MAILBOX_STATE_FULL;
/*
* If the caller is v1.0 convert the descriptor, otherwise copy
* directly.
*/
if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
size_t out_desc_size;
ret = spmc_populate_ffa_v1_0_descriptor(mbox->rx_buffer, obj,
buf_size,
fragment_offset,
&copy_size,
&out_desc_size);
if (ret != 0U) {
ERROR("%s: Failed to process descriptor.\n", __func__);
goto err_unlock_all;
}
} else {
full_copy_size = obj->desc_size - fragment_offset;
copy_size = MIN(full_copy_size, buf_size);
src = &obj->desc;
memcpy(mbox->rx_buffer, src + fragment_offset, copy_size);
}
spin_unlock(&mbox->lock);
spin_unlock(&spmc_shmem_obj_state.lock);
SMC_RET8(handle, FFA_MEM_FRAG_TX, handle_low, handle_high,
copy_size, sender_id, 0, 0, 0);
err_unlock_all:
spin_unlock(&mbox->lock);
err_unlock_shmem:
spin_unlock(&spmc_shmem_obj_state.lock);
return spmc_ffa_error_return(handle, ret);
}
/**
* spmc_ffa_mem_relinquish - FFA_MEM_RELINQUISH implementation.
* @client: Client state.
*
* Implements a subset of the FF-A FFA_MEM_RELINQUISH call.
* Used by secure os release previously shared memory to non-secure os.
*
* The handle to release must be in the client's (secure os's) transmit buffer.
*
* Return: 0 on success, error code on failure.
*/
int spmc_ffa_mem_relinquish(uint32_t smc_fid,
bool secure_origin,
uint32_t handle_low,
uint32_t handle_high,
uint32_t fragment_offset,
uint32_t sender_id,
void *cookie,
void *handle,
uint64_t flags)
{
int ret;
struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
struct spmc_shmem_obj *obj;
const struct ffa_mem_relinquish_descriptor *req;
if (!secure_origin) {
WARN("%s: unsupported relinquish direction.\n", __func__);
return spmc_ffa_error_return(handle,
FFA_ERROR_INVALID_PARAMETER);
}
spin_lock(&mbox->lock);
if (mbox->rxtx_page_count == 0U) {
WARN("%s: buffer pair not registered.\n", __func__);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_unlock_mailbox;
}
req = mbox->tx_buffer;
if (req->flags != 0U) {
WARN("%s: unsupported flags 0x%x\n", __func__, req->flags);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_unlock_mailbox;
}
if (req->endpoint_count == 0) {
WARN("%s: endpoint count cannot be 0.\n", __func__);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_unlock_mailbox;
}
spin_lock(&spmc_shmem_obj_state.lock);
obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle);
if (obj == NULL) {
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_unlock_all;
}
if (obj->desc.emad_count != req->endpoint_count) {
WARN("%s: mismatch of endpoint count %u != %u\n", __func__,
obj->desc.emad_count, req->endpoint_count);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_unlock_all;
}
/* Validate requested endpoint IDs match descriptor. */
for (size_t i = 0; i < req->endpoint_count; i++) {
bool found = false;
size_t emad_size;
struct ffa_emad_v1_0 *emad;
for (unsigned int j = 0; j < obj->desc.emad_count; j++) {
emad = spmc_shmem_obj_get_emad(&obj->desc, j,
MAKE_FFA_VERSION(1, 1),
&emad_size);
if (req->endpoint_array[i] ==
emad->mapd.endpoint_id) {
found = true;
break;
}
}
if (!found) {
WARN("%s: Invalid endpoint ID (0x%x).\n",
__func__, req->endpoint_array[i]);
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_unlock_all;
}
}
if (obj->in_use == 0U) {
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_unlock_all;
}
obj->in_use--;
spin_unlock(&spmc_shmem_obj_state.lock);
spin_unlock(&mbox->lock);
SMC_RET1(handle, FFA_SUCCESS_SMC32);
err_unlock_all:
spin_unlock(&spmc_shmem_obj_state.lock);
err_unlock_mailbox:
spin_unlock(&mbox->lock);
return spmc_ffa_error_return(handle, ret);
}
/**
* spmc_ffa_mem_reclaim - FFA_MEM_RECLAIM implementation.
* @client: Client state.
* @handle_low: Unique handle of shared memory object to reclaim. Bit[31:0].
* @handle_high: Unique handle of shared memory object to reclaim.
* Bit[63:32].
* @flags: Unsupported, ignored.
*
* Implements a subset of the FF-A FFA_MEM_RECLAIM call.
* Used by non-secure os reclaim memory previously shared with secure os.
*
* Return: 0 on success, error code on failure.
*/
int spmc_ffa_mem_reclaim(uint32_t smc_fid,
bool secure_origin,
uint32_t handle_low,
uint32_t handle_high,
uint32_t mem_flags,
uint64_t x4,
void *cookie,
void *handle,
uint64_t flags)
{
int ret;
struct spmc_shmem_obj *obj;
uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
if (secure_origin) {
WARN("%s: unsupported reclaim direction.\n", __func__);
return spmc_ffa_error_return(handle,
FFA_ERROR_INVALID_PARAMETER);
}
if (mem_flags != 0U) {
WARN("%s: unsupported flags 0x%x\n", __func__, mem_flags);
return spmc_ffa_error_return(handle,
FFA_ERROR_INVALID_PARAMETER);
}
spin_lock(&spmc_shmem_obj_state.lock);
obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
if (obj == NULL) {
ret = FFA_ERROR_INVALID_PARAMETER;
goto err_unlock;
}
if (obj->in_use != 0U) {
ret = FFA_ERROR_DENIED;
goto err_unlock;
}
/* Allow for platform specific operations to be performed. */
ret = plat_spmc_shmem_reclaim(&obj->desc);
if (ret != 0) {
goto err_unlock;
}
spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
spin_unlock(&spmc_shmem_obj_state.lock);
SMC_RET1(handle, FFA_SUCCESS_SMC32);
err_unlock:
spin_unlock(&spmc_shmem_obj_state.lock);
return spmc_ffa_error_return(handle, ret);
}