arm-trusted-firmware/drivers/arm/gic/v3/gicv3_main.c

409 lines
13 KiB
C

/*
* Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <debug.h>
#include <gic_common.h>
#include <gicv3.h>
#include "../common/gic_common_private.h"
#include "gicv3_private.h"
static const gicv3_driver_data_t *driver_data;
static unsigned int gicv2_compat;
/*
* Redistributor power operations are weakly bound so that they can be
* overridden
*/
#pragma weak gicv3_rdistif_off
#pragma weak gicv3_rdistif_on
/*******************************************************************************
* This function initialises the ARM GICv3 driver in EL3 with provided platform
* inputs.
******************************************************************************/
void gicv3_driver_init(const gicv3_driver_data_t *plat_driver_data)
{
unsigned int gic_version;
assert(plat_driver_data);
assert(plat_driver_data->gicd_base);
assert(plat_driver_data->gicr_base);
assert(plat_driver_data->rdistif_num);
assert(plat_driver_data->rdistif_base_addrs);
assert(IS_IN_EL3());
/*
* The platform should provide a list of at least one type of
* interrupts
*/
assert(plat_driver_data->g0_interrupt_array ||
plat_driver_data->g1s_interrupt_array);
/*
* If there are no interrupts of a particular type, then the number of
* interrupts of that type should be 0 and vice-versa.
*/
assert(plat_driver_data->g0_interrupt_array ?
plat_driver_data->g0_interrupt_num :
plat_driver_data->g0_interrupt_num == 0);
assert(plat_driver_data->g1s_interrupt_array ?
plat_driver_data->g1s_interrupt_num :
plat_driver_data->g1s_interrupt_num == 0);
/* Check for system register support */
#ifdef AARCH32
assert(read_id_pfr1() & (ID_PFR1_GIC_MASK << ID_PFR1_GIC_SHIFT));
#else
assert(read_id_aa64pfr0_el1() &
(ID_AA64PFR0_GIC_MASK << ID_AA64PFR0_GIC_SHIFT));
#endif /* AARCH32 */
/* The GIC version should be 3.0 */
gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
gic_version >>= PIDR2_ARCH_REV_SHIFT;
gic_version &= PIDR2_ARCH_REV_MASK;
assert(gic_version == ARCH_REV_GICV3);
/*
* Find out whether the GIC supports the GICv2 compatibility mode. The
* ARE_S bit resets to 0 if supported
*/
gicv2_compat = gicd_read_ctlr(plat_driver_data->gicd_base);
gicv2_compat >>= CTLR_ARE_S_SHIFT;
gicv2_compat = !(gicv2_compat & CTLR_ARE_S_MASK);
/*
* Find the base address of each implemented Redistributor interface.
* The number of interfaces should be equal to the number of CPUs in the
* system. The memory for saving these addresses has to be allocated by
* the platform port
*/
gicv3_rdistif_base_addrs_probe(plat_driver_data->rdistif_base_addrs,
plat_driver_data->rdistif_num,
plat_driver_data->gicr_base,
plat_driver_data->mpidr_to_core_pos);
driver_data = plat_driver_data;
/*
* The GIC driver data is initialized by the primary CPU with caches
* enabled. When the secondary CPU boots up, it initializes the
* GICC/GICR interface with the caches disabled. Hence flush the
* driver_data to ensure coherency. This is not required if the
* platform has HW_ASSISTED_COHERENCY enabled.
*/
#if !HW_ASSISTED_COHERENCY
flush_dcache_range((uintptr_t) &driver_data, sizeof(driver_data));
flush_dcache_range((uintptr_t) driver_data, sizeof(*driver_data));
#endif
INFO("GICv3 %s legacy support detected."
" ARM GICV3 driver initialized in EL3\n",
gicv2_compat ? "with" : "without");
}
/*******************************************************************************
* This function initialises the GIC distributor interface based upon the data
* provided by the platform while initialising the driver.
******************************************************************************/
void gicv3_distif_init(void)
{
unsigned int bitmap = 0;
assert(driver_data);
assert(driver_data->gicd_base);
assert(driver_data->g1s_interrupt_array ||
driver_data->g0_interrupt_array);
assert(IS_IN_EL3());
/*
* Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
* the ARE_S bit. The Distributor might generate a system error
* otherwise.
*/
gicd_clr_ctlr(driver_data->gicd_base,
CTLR_ENABLE_G0_BIT |
CTLR_ENABLE_G1S_BIT |
CTLR_ENABLE_G1NS_BIT,
RWP_TRUE);
/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
gicd_set_ctlr(driver_data->gicd_base,
CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
/* Set the default attribute of all SPIs */
gicv3_spis_configure_defaults(driver_data->gicd_base);
/* Configure the G1S SPIs */
if (driver_data->g1s_interrupt_array) {
gicv3_secure_spis_configure(driver_data->gicd_base,
driver_data->g1s_interrupt_num,
driver_data->g1s_interrupt_array,
INTR_GROUP1S);
bitmap |= CTLR_ENABLE_G1S_BIT;
}
/* Configure the G0 SPIs */
if (driver_data->g0_interrupt_array) {
gicv3_secure_spis_configure(driver_data->gicd_base,
driver_data->g0_interrupt_num,
driver_data->g0_interrupt_array,
INTR_GROUP0);
bitmap |= CTLR_ENABLE_G0_BIT;
}
/* Enable the secure SPIs now that they have been configured */
gicd_set_ctlr(driver_data->gicd_base, bitmap, RWP_TRUE);
}
/*******************************************************************************
* This function initialises the GIC Redistributor interface of the calling CPU
* (identified by the 'proc_num' parameter) based upon the data provided by the
* platform while initialising the driver.
******************************************************************************/
void gicv3_rdistif_init(unsigned int proc_num)
{
uintptr_t gicr_base;
assert(driver_data);
assert(proc_num < driver_data->rdistif_num);
assert(driver_data->rdistif_base_addrs);
assert(driver_data->gicd_base);
assert(gicd_read_ctlr(driver_data->gicd_base) & CTLR_ARE_S_BIT);
assert(driver_data->g1s_interrupt_array ||
driver_data->g0_interrupt_array);
assert(IS_IN_EL3());
/* Power on redistributor */
gicv3_rdistif_on(proc_num);
gicr_base = driver_data->rdistif_base_addrs[proc_num];
/* Set the default attribute of all SGIs and PPIs */
gicv3_ppi_sgi_configure_defaults(gicr_base);
/* Configure the G1S SGIs/PPIs */
if (driver_data->g1s_interrupt_array) {
gicv3_secure_ppi_sgi_configure(gicr_base,
driver_data->g1s_interrupt_num,
driver_data->g1s_interrupt_array,
INTR_GROUP1S);
}
/* Configure the G0 SGIs/PPIs */
if (driver_data->g0_interrupt_array) {
gicv3_secure_ppi_sgi_configure(gicr_base,
driver_data->g0_interrupt_num,
driver_data->g0_interrupt_array,
INTR_GROUP0);
}
}
/*******************************************************************************
* Functions to perform power operations on GIC Redistributor
******************************************************************************/
void gicv3_rdistif_off(unsigned int proc_num)
{
return;
}
void gicv3_rdistif_on(unsigned int proc_num)
{
return;
}
/*******************************************************************************
* This function enables the GIC CPU interface of the calling CPU using only
* system register accesses.
******************************************************************************/
void gicv3_cpuif_enable(unsigned int proc_num)
{
uintptr_t gicr_base;
unsigned int scr_el3;
unsigned int icc_sre_el3;
assert(driver_data);
assert(proc_num < driver_data->rdistif_num);
assert(driver_data->rdistif_base_addrs);
assert(IS_IN_EL3());
/* Mark the connected core as awake */
gicr_base = driver_data->rdistif_base_addrs[proc_num];
gicv3_rdistif_mark_core_awake(gicr_base);
/* Disable the legacy interrupt bypass */
icc_sre_el3 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT;
/*
* Enable system register access for EL3 and allow lower exception
* levels to configure the same for themselves. If the legacy mode is
* not supported, the SRE bit is RAO/WI
*/
icc_sre_el3 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT);
write_icc_sre_el3(read_icc_sre_el3() | icc_sre_el3);
scr_el3 = read_scr_el3();
/*
* Switch to NS state to write Non secure ICC_SRE_EL1 and
* ICC_SRE_EL2 registers.
*/
write_scr_el3(scr_el3 | SCR_NS_BIT);
isb();
write_icc_sre_el2(read_icc_sre_el2() | icc_sre_el3);
write_icc_sre_el1(ICC_SRE_SRE_BIT);
isb();
/* Switch to secure state. */
write_scr_el3(scr_el3 & (~SCR_NS_BIT));
isb();
/* Program the idle priority in the PMR */
write_icc_pmr_el1(GIC_PRI_MASK);
/* Enable Group0 interrupts */
write_icc_igrpen0_el1(IGRPEN1_EL1_ENABLE_G0_BIT);
/* Enable Group1 Secure interrupts */
write_icc_igrpen1_el3(read_icc_igrpen1_el3() |
IGRPEN1_EL3_ENABLE_G1S_BIT);
/* Write the secure ICC_SRE_EL1 register */
write_icc_sre_el1(ICC_SRE_SRE_BIT);
isb();
}
/*******************************************************************************
* This function disables the GIC CPU interface of the calling CPU using
* only system register accesses.
******************************************************************************/
void gicv3_cpuif_disable(unsigned int proc_num)
{
uintptr_t gicr_base;
assert(driver_data);
assert(proc_num < driver_data->rdistif_num);
assert(driver_data->rdistif_base_addrs);
assert(IS_IN_EL3());
/* Disable legacy interrupt bypass */
write_icc_sre_el3(read_icc_sre_el3() |
(ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT));
/* Disable Group0 interrupts */
write_icc_igrpen0_el1(read_icc_igrpen0_el1() &
~IGRPEN1_EL1_ENABLE_G0_BIT);
/* Disable Group1 Secure and Non-Secure interrupts */
write_icc_igrpen1_el3(read_icc_igrpen1_el3() &
~(IGRPEN1_EL3_ENABLE_G1NS_BIT |
IGRPEN1_EL3_ENABLE_G1S_BIT));
/* Synchronise accesses to group enable registers */
isb();
/* Mark the connected core as asleep */
gicr_base = driver_data->rdistif_base_addrs[proc_num];
gicv3_rdistif_mark_core_asleep(gicr_base);
}
/*******************************************************************************
* This function returns the id of the highest priority pending interrupt at
* the GIC cpu interface.
******************************************************************************/
unsigned int gicv3_get_pending_interrupt_id(void)
{
unsigned int id;
assert(IS_IN_EL3());
id = read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
/*
* If the ID is special identifier corresponding to G1S or G1NS
* interrupt, then read the highest pending group 1 interrupt.
*/
if ((id == PENDING_G1S_INTID) || (id == PENDING_G1NS_INTID))
return read_icc_hppir1_el1() & HPPIR1_EL1_INTID_MASK;
return id;
}
/*******************************************************************************
* This function returns the type of the highest priority pending interrupt at
* the GIC cpu interface. The return values can be one of the following :
* PENDING_G1S_INTID : The interrupt type is secure Group 1.
* PENDING_G1NS_INTID : The interrupt type is non secure Group 1.
* 0 - 1019 : The interrupt type is secure Group 0.
* GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
* sufficient priority to be signaled
******************************************************************************/
unsigned int gicv3_get_pending_interrupt_type(void)
{
assert(IS_IN_EL3());
return read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
}
/*******************************************************************************
* This function returns the type of the interrupt id depending upon the group
* this interrupt has been configured under by the interrupt controller i.e.
* group0 or group1 Secure / Non Secure. The return value can be one of the
* following :
* INTR_GROUP0 : The interrupt type is a Secure Group 0 interrupt
* INTR_GROUP1S : The interrupt type is a Secure Group 1 secure interrupt
* INTR_GROUP1NS: The interrupt type is a Secure Group 1 non secure
* interrupt.
******************************************************************************/
unsigned int gicv3_get_interrupt_type(unsigned int id,
unsigned int proc_num)
{
unsigned int igroup, grpmodr;
uintptr_t gicr_base;
assert(IS_IN_EL3());
assert(driver_data);
/* Ensure the parameters are valid */
assert(id < PENDING_G1S_INTID || id >= MIN_LPI_ID);
assert(proc_num < driver_data->rdistif_num);
/* All LPI interrupts are Group 1 non secure */
if (id >= MIN_LPI_ID)
return INTR_GROUP1NS;
if (id < MIN_SPI_ID) {
assert(driver_data->rdistif_base_addrs);
gicr_base = driver_data->rdistif_base_addrs[proc_num];
igroup = gicr_get_igroupr0(gicr_base, id);
grpmodr = gicr_get_igrpmodr0(gicr_base, id);
} else {
assert(driver_data->gicd_base);
igroup = gicd_get_igroupr(driver_data->gicd_base, id);
grpmodr = gicd_get_igrpmodr(driver_data->gicd_base, id);
}
/*
* If the IGROUP bit is set, then it is a Group 1 Non secure
* interrupt
*/
if (igroup)
return INTR_GROUP1NS;
/* If the GRPMOD bit is set, then it is a Group 1 Secure interrupt */
if (grpmodr)
return INTR_GROUP1S;
/* Else it is a Group 0 Secure interrupt */
return INTR_GROUP0;
}