arm-trusted-firmware/drivers/arm/gic/v3/gicv3_helpers.c

520 lines
15 KiB
C
Raw Normal View History

/*
* Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <debug.h>
#include <gic_common.h>
GIC: Allow specifying interrupt properties The GIC driver initialization currently allows an array of interrupts to be configured as secure. Future use cases would require more interrupt configuration other than just security, such as priority. This patch introduces a new interrupt property array as part of both GICv2 and GICv3 driver data. The platform can populate the array with interrupt numbers and respective properties. The corresponding driver initialization iterates through the array, and applies interrupt configuration as required. This capability, and the current way of supplying array (or arrays, in case of GICv3) of secure interrupts, are however mutually exclusive. Henceforth, the platform should supply either: - A list of interrupts to be mapped as secure (the current way). Platforms that do this will continue working as they were. With this patch, this scheme is deprecated. - A list of interrupt properties (properties include interrupt group). Individual interrupt properties are specified via. descriptors of type 'interrupt_prop_desc_t', which can be populated with the macro INTR_PROP_DESC(). A run time assert checks that the platform doesn't specify both. Henceforth the old scheme of providing list of secure interrupts is deprecated. When built with ERROR_DEPRECATED=1, GIC drivers will require that the interrupt properties are supplied instead of an array of secure interrupts. Add a section to firmware design about configuring secure interrupts. Fixes ARM-software/tf-issues#262 Change-Id: I8eec29e72eb69dbb6bce77879febf32c95376942 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
2017-09-22 08:32:09 +01:00
#include <interrupt_props.h>
#include "../common/gic_common_private.h"
#include "gicv3_private.h"
/*
* Accessor to read the GIC Distributor IGRPMODR corresponding to the
* interrupt `id`, 32 interrupt IDs at a time.
*/
unsigned int gicd_read_igrpmodr(uintptr_t base, unsigned int id)
{
unsigned int n = id >> IGRPMODR_SHIFT;
return mmio_read_32(base + GICD_IGRPMODR + (n << 2));
}
/*
* Accessor to write the GIC Distributor IGRPMODR corresponding to the
* interrupt `id`, 32 interrupt IDs at a time.
*/
void gicd_write_igrpmodr(uintptr_t base, unsigned int id, unsigned int val)
{
unsigned int n = id >> IGRPMODR_SHIFT;
mmio_write_32(base + GICD_IGRPMODR + (n << 2), val);
}
/*
* Accessor to get the bit corresponding to interrupt ID
* in GIC Distributor IGRPMODR.
*/
unsigned int gicd_get_igrpmodr(uintptr_t base, unsigned int id)
{
unsigned int bit_num = id & ((1U << IGRPMODR_SHIFT) - 1U);
unsigned int reg_val = gicd_read_igrpmodr(base, id);
return (reg_val >> bit_num) & 0x1U;
}
/*
* Accessor to set the bit corresponding to interrupt ID
* in GIC Distributor IGRPMODR.
*/
void gicd_set_igrpmodr(uintptr_t base, unsigned int id)
{
unsigned int bit_num = id & ((1U << IGRPMODR_SHIFT) - 1U);
unsigned int reg_val = gicd_read_igrpmodr(base, id);
gicd_write_igrpmodr(base, id, reg_val | (1U << bit_num));
}
/*
* Accessor to clear the bit corresponding to interrupt ID
* in GIC Distributor IGRPMODR.
*/
void gicd_clr_igrpmodr(uintptr_t base, unsigned int id)
{
unsigned int bit_num = id & ((1U << IGRPMODR_SHIFT) - 1U);
unsigned int reg_val = gicd_read_igrpmodr(base, id);
gicd_write_igrpmodr(base, id, reg_val & ~(1U << bit_num));
}
/*
* Accessor to read the GIC Re-distributor IPRIORITYR corresponding to the
* interrupt `id`, 4 interrupts IDs at a time.
*/
unsigned int gicr_read_ipriorityr(uintptr_t base, unsigned int id)
{
unsigned int n = id >> IPRIORITYR_SHIFT;
return mmio_read_32(base + GICR_IPRIORITYR + (n << 2));
}
/*
* Accessor to write the GIC Re-distributor IPRIORITYR corresponding to the
* interrupt `id`, 4 interrupts IDs at a time.
*/
void gicr_write_ipriorityr(uintptr_t base, unsigned int id, unsigned int val)
{
unsigned int n = id >> IPRIORITYR_SHIFT;
mmio_write_32(base + GICR_IPRIORITYR + (n << 2), val);
}
/*
* Accessor to get the bit corresponding to interrupt ID
* from GIC Re-distributor IGROUPR0.
*/
unsigned int gicr_get_igroupr0(uintptr_t base, unsigned int id)
{
unsigned int bit_num = id & ((1U << IGROUPR_SHIFT) - 1U);
unsigned int reg_val = gicr_read_igroupr0(base);
return (reg_val >> bit_num) & 0x1U;
}
/*
* Accessor to set the bit corresponding to interrupt ID
* in GIC Re-distributor IGROUPR0.
*/
void gicr_set_igroupr0(uintptr_t base, unsigned int id)
{
unsigned int bit_num = id & ((1U << IGROUPR_SHIFT) - 1U);
unsigned int reg_val = gicr_read_igroupr0(base);
gicr_write_igroupr0(base, reg_val | (1U << bit_num));
}
/*
* Accessor to clear the bit corresponding to interrupt ID
* in GIC Re-distributor IGROUPR0.
*/
void gicr_clr_igroupr0(uintptr_t base, unsigned int id)
{
unsigned int bit_num = id & ((1U << IGROUPR_SHIFT) - 1U);
unsigned int reg_val = gicr_read_igroupr0(base);
gicr_write_igroupr0(base, reg_val & ~(1U << bit_num));
}
/*
* Accessor to get the bit corresponding to interrupt ID
* from GIC Re-distributor IGRPMODR0.
*/
unsigned int gicr_get_igrpmodr0(uintptr_t base, unsigned int id)
{
unsigned int bit_num = id & ((1U << IGRPMODR_SHIFT) - 1U);
unsigned int reg_val = gicr_read_igrpmodr0(base);
return (reg_val >> bit_num) & 0x1U;
}
/*
* Accessor to set the bit corresponding to interrupt ID
* in GIC Re-distributor IGRPMODR0.
*/
void gicr_set_igrpmodr0(uintptr_t base, unsigned int id)
{
unsigned int bit_num = id & ((1U << IGRPMODR_SHIFT) - 1U);
unsigned int reg_val = gicr_read_igrpmodr0(base);
gicr_write_igrpmodr0(base, reg_val | (1U << bit_num));
}
/*
* Accessor to clear the bit corresponding to interrupt ID
* in GIC Re-distributor IGRPMODR0.
*/
void gicr_clr_igrpmodr0(uintptr_t base, unsigned int id)
{
unsigned int bit_num = id & ((1U << IGRPMODR_SHIFT) - 1U);
unsigned int reg_val = gicr_read_igrpmodr0(base);
gicr_write_igrpmodr0(base, reg_val & ~(1U << bit_num));
}
/*
* Accessor to set the bit corresponding to interrupt ID
* in GIC Re-distributor ISENABLER0.
*/
void gicr_set_isenabler0(uintptr_t base, unsigned int id)
{
unsigned int bit_num = id & ((1U << ISENABLER_SHIFT) - 1U);
gicr_write_isenabler0(base, (1U << bit_num));
}
/*
* Accessor to set the bit corresponding to interrupt ID in GIC Re-distributor
* ICENABLER0.
*/
void gicr_set_icenabler0(uintptr_t base, unsigned int id)
{
unsigned int bit_num = id & ((1U << ICENABLER_SHIFT) - 1U);
gicr_write_icenabler0(base, (1U << bit_num));
}
/*
* Accessor to set the bit corresponding to interrupt ID in GIC Re-distributor
* ISACTIVER0.
*/
unsigned int gicr_get_isactiver0(uintptr_t base, unsigned int id)
{
unsigned int bit_num = id & ((1U << ISACTIVER_SHIFT) - 1U);
unsigned int reg_val = gicr_read_isactiver0(base);
return (reg_val >> bit_num) & 0x1U;
}
/*
* Accessor to clear the bit corresponding to interrupt ID in GIC Re-distributor
* ICPENDRR0.
*/
void gicr_set_icpendr0(uintptr_t base, unsigned int id)
{
unsigned int bit_num = id & ((1U << ICPENDR_SHIFT) - 1U);
gicr_write_icpendr0(base, (1U << bit_num));
}
/*
* Accessor to set the bit corresponding to interrupt ID in GIC Re-distributor
* ISPENDR0.
*/
void gicr_set_ispendr0(uintptr_t base, unsigned int id)
{
unsigned int bit_num = id & ((1U << ISPENDR_SHIFT) - 1U);
gicr_write_ispendr0(base, (1U << bit_num));
}
/*
* Accessor to set the byte corresponding to interrupt ID
* in GIC Re-distributor IPRIORITYR.
*/
void gicr_set_ipriorityr(uintptr_t base, unsigned int id, unsigned int pri)
{
uint8_t val = pri & GIC_PRI_MASK;
mmio_write_8(base + GICR_IPRIORITYR + id, val);
}
/*
* Accessor to set the bit fields corresponding to interrupt ID
* in GIC Re-distributor ICFGR0.
*/
void gicr_set_icfgr0(uintptr_t base, unsigned int id, unsigned int cfg)
{
/* Interrupt configuration is a 2-bit field */
unsigned int bit_num = id & ((1U << ICFGR_SHIFT) - 1U);
unsigned int bit_shift = bit_num << 1U;
uint32_t reg_val = gicr_read_icfgr0(base);
/* Clear the field, and insert required configuration */
reg_val &= ~(GIC_CFG_MASK << bit_shift);
reg_val |= ((cfg & GIC_CFG_MASK) << bit_shift);
gicr_write_icfgr0(base, reg_val);
}
/*
* Accessor to set the bit fields corresponding to interrupt ID
* in GIC Re-distributor ICFGR1.
*/
void gicr_set_icfgr1(uintptr_t base, unsigned int id, unsigned int cfg)
{
/* Interrupt configuration is a 2-bit field */
unsigned int bit_num = id & ((1U << ICFGR_SHIFT) - 1U);
unsigned int bit_shift = bit_num << 1U;
uint32_t reg_val = gicr_read_icfgr1(base);
/* Clear the field, and insert required configuration */
reg_val &= ~(GIC_CFG_MASK << bit_shift);
reg_val |= ((cfg & GIC_CFG_MASK) << bit_shift);
gicr_write_icfgr1(base, reg_val);
}
/******************************************************************************
* This function marks the core as awake in the re-distributor and
* ensures that the interface is active.
*****************************************************************************/
void gicv3_rdistif_mark_core_awake(uintptr_t gicr_base)
{
/*
* The WAKER_PS_BIT should be changed to 0
* only when WAKER_CA_BIT is 1.
*/
assert((gicr_read_waker(gicr_base) & WAKER_CA_BIT) != 0U);
/* Mark the connected core as awake */
gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) & ~WAKER_PS_BIT);
/* Wait till the WAKER_CA_BIT changes to 0 */
while ((gicr_read_waker(gicr_base) & WAKER_CA_BIT) != 0U)
;
}
/******************************************************************************
* This function marks the core as asleep in the re-distributor and ensures
* that the interface is quiescent.
*****************************************************************************/
void gicv3_rdistif_mark_core_asleep(uintptr_t gicr_base)
{
/* Mark the connected core as asleep */
gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) | WAKER_PS_BIT);
/* Wait till the WAKER_CA_BIT changes to 1 */
while ((gicr_read_waker(gicr_base) & WAKER_CA_BIT) == 0U)
;
}
/*******************************************************************************
* This function probes the Redistributor frames when the driver is initialised
* and saves their base addresses. These base addresses are used later to
* initialise each Redistributor interface.
******************************************************************************/
void gicv3_rdistif_base_addrs_probe(uintptr_t *rdistif_base_addrs,
unsigned int rdistif_num,
uintptr_t gicr_base,
mpidr_hash_fn mpidr_to_core_pos)
{
u_register_t mpidr;
unsigned int proc_num;
uint64_t typer_val;
uintptr_t rdistif_base = gicr_base;
assert(rdistif_base_addrs != NULL);
/*
* Iterate over the Redistributor frames. Store the base address of each
* frame in the platform provided array. Use the "Processor Number"
* field to index into the array if the platform has not provided a hash
* function to convert an MPIDR (obtained from the "Affinity Value"
* field into a linear index.
*/
do {
typer_val = gicr_read_typer(rdistif_base);
if (mpidr_to_core_pos != NULL) {
mpidr = mpidr_from_gicr_typer(typer_val);
proc_num = mpidr_to_core_pos(mpidr);
} else {
proc_num = (typer_val >> TYPER_PROC_NUM_SHIFT) &
TYPER_PROC_NUM_MASK;
}
assert(proc_num < rdistif_num);
rdistif_base_addrs[proc_num] = rdistif_base;
rdistif_base += (1U << GICR_PCPUBASE_SHIFT);
} while ((typer_val & TYPER_LAST_BIT) == 0U);
}
/*******************************************************************************
* Helper function to configure the default attributes of SPIs.
******************************************************************************/
void gicv3_spis_config_defaults(uintptr_t gicd_base)
{
unsigned int index, num_ints;
num_ints = gicd_read_typer(gicd_base);
num_ints &= TYPER_IT_LINES_NO_MASK;
num_ints = (num_ints + 1U) << 5;
/*
* Treat all SPIs as G1NS by default. The number of interrupts is
* calculated as 32 * (IT_LINES + 1). We do 32 at a time.
*/
for (index = MIN_SPI_ID; index < num_ints; index += 32U)
gicd_write_igroupr(gicd_base, index, ~0U);
/* Setup the default SPI priorities doing four at a time */
for (index = MIN_SPI_ID; index < num_ints; index += 4U)
gicd_write_ipriorityr(gicd_base,
index,
GICD_IPRIORITYR_DEF_VAL);
/*
* Treat all SPIs as level triggered by default, write 16 at
* a time
*/
for (index = MIN_SPI_ID; index < num_ints; index += 16U)
gicd_write_icfgr(gicd_base, index, 0U);
}
GIC: Allow specifying interrupt properties The GIC driver initialization currently allows an array of interrupts to be configured as secure. Future use cases would require more interrupt configuration other than just security, such as priority. This patch introduces a new interrupt property array as part of both GICv2 and GICv3 driver data. The platform can populate the array with interrupt numbers and respective properties. The corresponding driver initialization iterates through the array, and applies interrupt configuration as required. This capability, and the current way of supplying array (or arrays, in case of GICv3) of secure interrupts, are however mutually exclusive. Henceforth, the platform should supply either: - A list of interrupts to be mapped as secure (the current way). Platforms that do this will continue working as they were. With this patch, this scheme is deprecated. - A list of interrupt properties (properties include interrupt group). Individual interrupt properties are specified via. descriptors of type 'interrupt_prop_desc_t', which can be populated with the macro INTR_PROP_DESC(). A run time assert checks that the platform doesn't specify both. Henceforth the old scheme of providing list of secure interrupts is deprecated. When built with ERROR_DEPRECATED=1, GIC drivers will require that the interrupt properties are supplied instead of an array of secure interrupts. Add a section to firmware design about configuring secure interrupts. Fixes ARM-software/tf-issues#262 Change-Id: I8eec29e72eb69dbb6bce77879febf32c95376942 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
2017-09-22 08:32:09 +01:00
/*******************************************************************************
* Helper function to configure properties of secure SPIs
******************************************************************************/
unsigned int gicv3_secure_spis_config_props(uintptr_t gicd_base,
GIC: Allow specifying interrupt properties The GIC driver initialization currently allows an array of interrupts to be configured as secure. Future use cases would require more interrupt configuration other than just security, such as priority. This patch introduces a new interrupt property array as part of both GICv2 and GICv3 driver data. The platform can populate the array with interrupt numbers and respective properties. The corresponding driver initialization iterates through the array, and applies interrupt configuration as required. This capability, and the current way of supplying array (or arrays, in case of GICv3) of secure interrupts, are however mutually exclusive. Henceforth, the platform should supply either: - A list of interrupts to be mapped as secure (the current way). Platforms that do this will continue working as they were. With this patch, this scheme is deprecated. - A list of interrupt properties (properties include interrupt group). Individual interrupt properties are specified via. descriptors of type 'interrupt_prop_desc_t', which can be populated with the macro INTR_PROP_DESC(). A run time assert checks that the platform doesn't specify both. Henceforth the old scheme of providing list of secure interrupts is deprecated. When built with ERROR_DEPRECATED=1, GIC drivers will require that the interrupt properties are supplied instead of an array of secure interrupts. Add a section to firmware design about configuring secure interrupts. Fixes ARM-software/tf-issues#262 Change-Id: I8eec29e72eb69dbb6bce77879febf32c95376942 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
2017-09-22 08:32:09 +01:00
const interrupt_prop_t *interrupt_props,
unsigned int interrupt_props_num)
{
unsigned int i;
const interrupt_prop_t *current_prop;
unsigned long long gic_affinity_val;
unsigned int ctlr_enable = 0U;
GIC: Allow specifying interrupt properties The GIC driver initialization currently allows an array of interrupts to be configured as secure. Future use cases would require more interrupt configuration other than just security, such as priority. This patch introduces a new interrupt property array as part of both GICv2 and GICv3 driver data. The platform can populate the array with interrupt numbers and respective properties. The corresponding driver initialization iterates through the array, and applies interrupt configuration as required. This capability, and the current way of supplying array (or arrays, in case of GICv3) of secure interrupts, are however mutually exclusive. Henceforth, the platform should supply either: - A list of interrupts to be mapped as secure (the current way). Platforms that do this will continue working as they were. With this patch, this scheme is deprecated. - A list of interrupt properties (properties include interrupt group). Individual interrupt properties are specified via. descriptors of type 'interrupt_prop_desc_t', which can be populated with the macro INTR_PROP_DESC(). A run time assert checks that the platform doesn't specify both. Henceforth the old scheme of providing list of secure interrupts is deprecated. When built with ERROR_DEPRECATED=1, GIC drivers will require that the interrupt properties are supplied instead of an array of secure interrupts. Add a section to firmware design about configuring secure interrupts. Fixes ARM-software/tf-issues#262 Change-Id: I8eec29e72eb69dbb6bce77879febf32c95376942 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
2017-09-22 08:32:09 +01:00
/* Make sure there's a valid property array */
if (interrupt_props_num > 0U)
assert(interrupt_props != NULL);
GIC: Allow specifying interrupt properties The GIC driver initialization currently allows an array of interrupts to be configured as secure. Future use cases would require more interrupt configuration other than just security, such as priority. This patch introduces a new interrupt property array as part of both GICv2 and GICv3 driver data. The platform can populate the array with interrupt numbers and respective properties. The corresponding driver initialization iterates through the array, and applies interrupt configuration as required. This capability, and the current way of supplying array (or arrays, in case of GICv3) of secure interrupts, are however mutually exclusive. Henceforth, the platform should supply either: - A list of interrupts to be mapped as secure (the current way). Platforms that do this will continue working as they were. With this patch, this scheme is deprecated. - A list of interrupt properties (properties include interrupt group). Individual interrupt properties are specified via. descriptors of type 'interrupt_prop_desc_t', which can be populated with the macro INTR_PROP_DESC(). A run time assert checks that the platform doesn't specify both. Henceforth the old scheme of providing list of secure interrupts is deprecated. When built with ERROR_DEPRECATED=1, GIC drivers will require that the interrupt properties are supplied instead of an array of secure interrupts. Add a section to firmware design about configuring secure interrupts. Fixes ARM-software/tf-issues#262 Change-Id: I8eec29e72eb69dbb6bce77879febf32c95376942 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
2017-09-22 08:32:09 +01:00
for (i = 0U; i < interrupt_props_num; i++) {
GIC: Allow specifying interrupt properties The GIC driver initialization currently allows an array of interrupts to be configured as secure. Future use cases would require more interrupt configuration other than just security, such as priority. This patch introduces a new interrupt property array as part of both GICv2 and GICv3 driver data. The platform can populate the array with interrupt numbers and respective properties. The corresponding driver initialization iterates through the array, and applies interrupt configuration as required. This capability, and the current way of supplying array (or arrays, in case of GICv3) of secure interrupts, are however mutually exclusive. Henceforth, the platform should supply either: - A list of interrupts to be mapped as secure (the current way). Platforms that do this will continue working as they were. With this patch, this scheme is deprecated. - A list of interrupt properties (properties include interrupt group). Individual interrupt properties are specified via. descriptors of type 'interrupt_prop_desc_t', which can be populated with the macro INTR_PROP_DESC(). A run time assert checks that the platform doesn't specify both. Henceforth the old scheme of providing list of secure interrupts is deprecated. When built with ERROR_DEPRECATED=1, GIC drivers will require that the interrupt properties are supplied instead of an array of secure interrupts. Add a section to firmware design about configuring secure interrupts. Fixes ARM-software/tf-issues#262 Change-Id: I8eec29e72eb69dbb6bce77879febf32c95376942 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
2017-09-22 08:32:09 +01:00
current_prop = &interrupt_props[i];
if (current_prop->intr_num < MIN_SPI_ID)
continue;
/* Configure this interrupt as a secure interrupt */
gicd_clr_igroupr(gicd_base, current_prop->intr_num);
/* Configure this interrupt as G0 or a G1S interrupt */
assert((current_prop->intr_grp == INTR_GROUP0) ||
(current_prop->intr_grp == INTR_GROUP1S));
if (current_prop->intr_grp == INTR_GROUP1S) {
gicd_set_igrpmodr(gicd_base, current_prop->intr_num);
ctlr_enable |= CTLR_ENABLE_G1S_BIT;
} else {
gicd_clr_igrpmodr(gicd_base, current_prop->intr_num);
ctlr_enable |= CTLR_ENABLE_G0_BIT;
}
/* Set interrupt configuration */
gicd_set_icfgr(gicd_base, current_prop->intr_num,
current_prop->intr_cfg);
/* Set the priority of this interrupt */
gicd_set_ipriorityr(gicd_base, current_prop->intr_num,
current_prop->intr_pri);
/* Target SPIs to the primary CPU */
gic_affinity_val =
gicd_irouter_val_from_mpidr(read_mpidr(), 0U);
GIC: Allow specifying interrupt properties The GIC driver initialization currently allows an array of interrupts to be configured as secure. Future use cases would require more interrupt configuration other than just security, such as priority. This patch introduces a new interrupt property array as part of both GICv2 and GICv3 driver data. The platform can populate the array with interrupt numbers and respective properties. The corresponding driver initialization iterates through the array, and applies interrupt configuration as required. This capability, and the current way of supplying array (or arrays, in case of GICv3) of secure interrupts, are however mutually exclusive. Henceforth, the platform should supply either: - A list of interrupts to be mapped as secure (the current way). Platforms that do this will continue working as they were. With this patch, this scheme is deprecated. - A list of interrupt properties (properties include interrupt group). Individual interrupt properties are specified via. descriptors of type 'interrupt_prop_desc_t', which can be populated with the macro INTR_PROP_DESC(). A run time assert checks that the platform doesn't specify both. Henceforth the old scheme of providing list of secure interrupts is deprecated. When built with ERROR_DEPRECATED=1, GIC drivers will require that the interrupt properties are supplied instead of an array of secure interrupts. Add a section to firmware design about configuring secure interrupts. Fixes ARM-software/tf-issues#262 Change-Id: I8eec29e72eb69dbb6bce77879febf32c95376942 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
2017-09-22 08:32:09 +01:00
gicd_write_irouter(gicd_base, current_prop->intr_num,
gic_affinity_val);
/* Enable this interrupt */
gicd_set_isenabler(gicd_base, current_prop->intr_num);
}
return ctlr_enable;
}
/*******************************************************************************
* Helper function to configure the default attributes of SPIs.
******************************************************************************/
void gicv3_ppi_sgi_config_defaults(uintptr_t gicr_base)
{
unsigned int index;
/*
* Disable all SGIs (imp. def.)/PPIs before configuring them. This is a
* more scalable approach as it avoids clearing the enable bits in the
* GICD_CTLR
*/
gicr_write_icenabler0(gicr_base, ~0U);
gicr_wait_for_pending_write(gicr_base);
/* Treat all SGIs/PPIs as G1NS by default. */
gicr_write_igroupr0(gicr_base, ~0U);
/* Setup the default PPI/SGI priorities doing four at a time */
for (index = 0U; index < MIN_SPI_ID; index += 4U)
gicr_write_ipriorityr(gicr_base,
index,
GICD_IPRIORITYR_DEF_VAL);
/* Configure all PPIs as level triggered by default */
gicr_write_icfgr1(gicr_base, 0U);
}
GIC: Allow specifying interrupt properties The GIC driver initialization currently allows an array of interrupts to be configured as secure. Future use cases would require more interrupt configuration other than just security, such as priority. This patch introduces a new interrupt property array as part of both GICv2 and GICv3 driver data. The platform can populate the array with interrupt numbers and respective properties. The corresponding driver initialization iterates through the array, and applies interrupt configuration as required. This capability, and the current way of supplying array (or arrays, in case of GICv3) of secure interrupts, are however mutually exclusive. Henceforth, the platform should supply either: - A list of interrupts to be mapped as secure (the current way). Platforms that do this will continue working as they were. With this patch, this scheme is deprecated. - A list of interrupt properties (properties include interrupt group). Individual interrupt properties are specified via. descriptors of type 'interrupt_prop_desc_t', which can be populated with the macro INTR_PROP_DESC(). A run time assert checks that the platform doesn't specify both. Henceforth the old scheme of providing list of secure interrupts is deprecated. When built with ERROR_DEPRECATED=1, GIC drivers will require that the interrupt properties are supplied instead of an array of secure interrupts. Add a section to firmware design about configuring secure interrupts. Fixes ARM-software/tf-issues#262 Change-Id: I8eec29e72eb69dbb6bce77879febf32c95376942 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
2017-09-22 08:32:09 +01:00
/*******************************************************************************
* Helper function to configure properties of secure G0 and G1S PPIs and SGIs.
******************************************************************************/
unsigned int gicv3_secure_ppi_sgi_config_props(uintptr_t gicr_base,
GIC: Allow specifying interrupt properties The GIC driver initialization currently allows an array of interrupts to be configured as secure. Future use cases would require more interrupt configuration other than just security, such as priority. This patch introduces a new interrupt property array as part of both GICv2 and GICv3 driver data. The platform can populate the array with interrupt numbers and respective properties. The corresponding driver initialization iterates through the array, and applies interrupt configuration as required. This capability, and the current way of supplying array (or arrays, in case of GICv3) of secure interrupts, are however mutually exclusive. Henceforth, the platform should supply either: - A list of interrupts to be mapped as secure (the current way). Platforms that do this will continue working as they were. With this patch, this scheme is deprecated. - A list of interrupt properties (properties include interrupt group). Individual interrupt properties are specified via. descriptors of type 'interrupt_prop_desc_t', which can be populated with the macro INTR_PROP_DESC(). A run time assert checks that the platform doesn't specify both. Henceforth the old scheme of providing list of secure interrupts is deprecated. When built with ERROR_DEPRECATED=1, GIC drivers will require that the interrupt properties are supplied instead of an array of secure interrupts. Add a section to firmware design about configuring secure interrupts. Fixes ARM-software/tf-issues#262 Change-Id: I8eec29e72eb69dbb6bce77879febf32c95376942 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
2017-09-22 08:32:09 +01:00
const interrupt_prop_t *interrupt_props,
unsigned int interrupt_props_num)
{
unsigned int i;
const interrupt_prop_t *current_prop;
unsigned int ctlr_enable = 0U;
GIC: Allow specifying interrupt properties The GIC driver initialization currently allows an array of interrupts to be configured as secure. Future use cases would require more interrupt configuration other than just security, such as priority. This patch introduces a new interrupt property array as part of both GICv2 and GICv3 driver data. The platform can populate the array with interrupt numbers and respective properties. The corresponding driver initialization iterates through the array, and applies interrupt configuration as required. This capability, and the current way of supplying array (or arrays, in case of GICv3) of secure interrupts, are however mutually exclusive. Henceforth, the platform should supply either: - A list of interrupts to be mapped as secure (the current way). Platforms that do this will continue working as they were. With this patch, this scheme is deprecated. - A list of interrupt properties (properties include interrupt group). Individual interrupt properties are specified via. descriptors of type 'interrupt_prop_desc_t', which can be populated with the macro INTR_PROP_DESC(). A run time assert checks that the platform doesn't specify both. Henceforth the old scheme of providing list of secure interrupts is deprecated. When built with ERROR_DEPRECATED=1, GIC drivers will require that the interrupt properties are supplied instead of an array of secure interrupts. Add a section to firmware design about configuring secure interrupts. Fixes ARM-software/tf-issues#262 Change-Id: I8eec29e72eb69dbb6bce77879febf32c95376942 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
2017-09-22 08:32:09 +01:00
/* Make sure there's a valid property array */
if (interrupt_props_num > 0U)
assert(interrupt_props != NULL);
GIC: Allow specifying interrupt properties The GIC driver initialization currently allows an array of interrupts to be configured as secure. Future use cases would require more interrupt configuration other than just security, such as priority. This patch introduces a new interrupt property array as part of both GICv2 and GICv3 driver data. The platform can populate the array with interrupt numbers and respective properties. The corresponding driver initialization iterates through the array, and applies interrupt configuration as required. This capability, and the current way of supplying array (or arrays, in case of GICv3) of secure interrupts, are however mutually exclusive. Henceforth, the platform should supply either: - A list of interrupts to be mapped as secure (the current way). Platforms that do this will continue working as they were. With this patch, this scheme is deprecated. - A list of interrupt properties (properties include interrupt group). Individual interrupt properties are specified via. descriptors of type 'interrupt_prop_desc_t', which can be populated with the macro INTR_PROP_DESC(). A run time assert checks that the platform doesn't specify both. Henceforth the old scheme of providing list of secure interrupts is deprecated. When built with ERROR_DEPRECATED=1, GIC drivers will require that the interrupt properties are supplied instead of an array of secure interrupts. Add a section to firmware design about configuring secure interrupts. Fixes ARM-software/tf-issues#262 Change-Id: I8eec29e72eb69dbb6bce77879febf32c95376942 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
2017-09-22 08:32:09 +01:00
for (i = 0U; i < interrupt_props_num; i++) {
GIC: Allow specifying interrupt properties The GIC driver initialization currently allows an array of interrupts to be configured as secure. Future use cases would require more interrupt configuration other than just security, such as priority. This patch introduces a new interrupt property array as part of both GICv2 and GICv3 driver data. The platform can populate the array with interrupt numbers and respective properties. The corresponding driver initialization iterates through the array, and applies interrupt configuration as required. This capability, and the current way of supplying array (or arrays, in case of GICv3) of secure interrupts, are however mutually exclusive. Henceforth, the platform should supply either: - A list of interrupts to be mapped as secure (the current way). Platforms that do this will continue working as they were. With this patch, this scheme is deprecated. - A list of interrupt properties (properties include interrupt group). Individual interrupt properties are specified via. descriptors of type 'interrupt_prop_desc_t', which can be populated with the macro INTR_PROP_DESC(). A run time assert checks that the platform doesn't specify both. Henceforth the old scheme of providing list of secure interrupts is deprecated. When built with ERROR_DEPRECATED=1, GIC drivers will require that the interrupt properties are supplied instead of an array of secure interrupts. Add a section to firmware design about configuring secure interrupts. Fixes ARM-software/tf-issues#262 Change-Id: I8eec29e72eb69dbb6bce77879febf32c95376942 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
2017-09-22 08:32:09 +01:00
current_prop = &interrupt_props[i];
if (current_prop->intr_num >= MIN_SPI_ID)
continue;
/* Configure this interrupt as a secure interrupt */
gicr_clr_igroupr0(gicr_base, current_prop->intr_num);
/* Configure this interrupt as G0 or a G1S interrupt */
assert((current_prop->intr_grp == INTR_GROUP0) ||
(current_prop->intr_grp == INTR_GROUP1S));
if (current_prop->intr_grp == INTR_GROUP1S) {
GIC: Allow specifying interrupt properties The GIC driver initialization currently allows an array of interrupts to be configured as secure. Future use cases would require more interrupt configuration other than just security, such as priority. This patch introduces a new interrupt property array as part of both GICv2 and GICv3 driver data. The platform can populate the array with interrupt numbers and respective properties. The corresponding driver initialization iterates through the array, and applies interrupt configuration as required. This capability, and the current way of supplying array (or arrays, in case of GICv3) of secure interrupts, are however mutually exclusive. Henceforth, the platform should supply either: - A list of interrupts to be mapped as secure (the current way). Platforms that do this will continue working as they were. With this patch, this scheme is deprecated. - A list of interrupt properties (properties include interrupt group). Individual interrupt properties are specified via. descriptors of type 'interrupt_prop_desc_t', which can be populated with the macro INTR_PROP_DESC(). A run time assert checks that the platform doesn't specify both. Henceforth the old scheme of providing list of secure interrupts is deprecated. When built with ERROR_DEPRECATED=1, GIC drivers will require that the interrupt properties are supplied instead of an array of secure interrupts. Add a section to firmware design about configuring secure interrupts. Fixes ARM-software/tf-issues#262 Change-Id: I8eec29e72eb69dbb6bce77879febf32c95376942 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
2017-09-22 08:32:09 +01:00
gicr_set_igrpmodr0(gicr_base, current_prop->intr_num);
ctlr_enable |= CTLR_ENABLE_G1S_BIT;
} else {
GIC: Allow specifying interrupt properties The GIC driver initialization currently allows an array of interrupts to be configured as secure. Future use cases would require more interrupt configuration other than just security, such as priority. This patch introduces a new interrupt property array as part of both GICv2 and GICv3 driver data. The platform can populate the array with interrupt numbers and respective properties. The corresponding driver initialization iterates through the array, and applies interrupt configuration as required. This capability, and the current way of supplying array (or arrays, in case of GICv3) of secure interrupts, are however mutually exclusive. Henceforth, the platform should supply either: - A list of interrupts to be mapped as secure (the current way). Platforms that do this will continue working as they were. With this patch, this scheme is deprecated. - A list of interrupt properties (properties include interrupt group). Individual interrupt properties are specified via. descriptors of type 'interrupt_prop_desc_t', which can be populated with the macro INTR_PROP_DESC(). A run time assert checks that the platform doesn't specify both. Henceforth the old scheme of providing list of secure interrupts is deprecated. When built with ERROR_DEPRECATED=1, GIC drivers will require that the interrupt properties are supplied instead of an array of secure interrupts. Add a section to firmware design about configuring secure interrupts. Fixes ARM-software/tf-issues#262 Change-Id: I8eec29e72eb69dbb6bce77879febf32c95376942 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
2017-09-22 08:32:09 +01:00
gicr_clr_igrpmodr0(gicr_base, current_prop->intr_num);
ctlr_enable |= CTLR_ENABLE_G0_BIT;
}
GIC: Allow specifying interrupt properties The GIC driver initialization currently allows an array of interrupts to be configured as secure. Future use cases would require more interrupt configuration other than just security, such as priority. This patch introduces a new interrupt property array as part of both GICv2 and GICv3 driver data. The platform can populate the array with interrupt numbers and respective properties. The corresponding driver initialization iterates through the array, and applies interrupt configuration as required. This capability, and the current way of supplying array (or arrays, in case of GICv3) of secure interrupts, are however mutually exclusive. Henceforth, the platform should supply either: - A list of interrupts to be mapped as secure (the current way). Platforms that do this will continue working as they were. With this patch, this scheme is deprecated. - A list of interrupt properties (properties include interrupt group). Individual interrupt properties are specified via. descriptors of type 'interrupt_prop_desc_t', which can be populated with the macro INTR_PROP_DESC(). A run time assert checks that the platform doesn't specify both. Henceforth the old scheme of providing list of secure interrupts is deprecated. When built with ERROR_DEPRECATED=1, GIC drivers will require that the interrupt properties are supplied instead of an array of secure interrupts. Add a section to firmware design about configuring secure interrupts. Fixes ARM-software/tf-issues#262 Change-Id: I8eec29e72eb69dbb6bce77879febf32c95376942 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
2017-09-22 08:32:09 +01:00
/* Set the priority of this interrupt */
gicr_set_ipriorityr(gicr_base, current_prop->intr_num,
current_prop->intr_pri);
/*
* Set interrupt configuration for PPIs. Configuration for SGIs
* are ignored.
*/
if ((current_prop->intr_num >= MIN_PPI_ID) &&
(current_prop->intr_num < MIN_SPI_ID)) {
gicr_set_icfgr1(gicr_base, current_prop->intr_num,
current_prop->intr_cfg);
}
/* Enable this interrupt */
gicr_set_isenabler0(gicr_base, current_prop->intr_num);
}
return ctlr_enable;
GIC: Allow specifying interrupt properties The GIC driver initialization currently allows an array of interrupts to be configured as secure. Future use cases would require more interrupt configuration other than just security, such as priority. This patch introduces a new interrupt property array as part of both GICv2 and GICv3 driver data. The platform can populate the array with interrupt numbers and respective properties. The corresponding driver initialization iterates through the array, and applies interrupt configuration as required. This capability, and the current way of supplying array (or arrays, in case of GICv3) of secure interrupts, are however mutually exclusive. Henceforth, the platform should supply either: - A list of interrupts to be mapped as secure (the current way). Platforms that do this will continue working as they were. With this patch, this scheme is deprecated. - A list of interrupt properties (properties include interrupt group). Individual interrupt properties are specified via. descriptors of type 'interrupt_prop_desc_t', which can be populated with the macro INTR_PROP_DESC(). A run time assert checks that the platform doesn't specify both. Henceforth the old scheme of providing list of secure interrupts is deprecated. When built with ERROR_DEPRECATED=1, GIC drivers will require that the interrupt properties are supplied instead of an array of secure interrupts. Add a section to firmware design about configuring secure interrupts. Fixes ARM-software/tf-issues#262 Change-Id: I8eec29e72eb69dbb6bce77879febf32c95376942 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
2017-09-22 08:32:09 +01:00
}