arm-trusted-firmware/make_helpers/defaults.mk

162 lines
4.6 KiB
Makefile
Raw Normal View History

#
# Copyright (c) 2016-2017, ARM Limited and Contributors. All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
#
# Default, static values for build variables, listed in alphabetic order.
# Dependencies between build options, if any, are handled in the top-level
# Makefile, after this file is included. This ensures that the former is better
# poised to handle dependencies, as all build variables would have a default
# value by then.
# The AArch32 Secure Payload to be built as BL32 image
AARCH32_SP := none
# The Target build architecture. Supported values are: aarch64, aarch32.
ARCH := aarch64
# ARM Architecture major and minor versions: 8.0 by default.
ARM_ARCH_MAJOR := 8
ARM_ARCH_MINOR := 0
# Determine the version of ARM GIC architecture to use for interrupt management
# in EL3. The platform port can change this value if needed.
ARM_GIC_ARCH := 2
# Flag used to indicate if ASM_ASSERTION should be enabled for the build.
ASM_ASSERTION := 0
# Base commit to perform code check on
BASE_COMMIT := origin/master
# By default, consider that the platform may release several CPUs out of reset.
# The platform Makefile is free to override this value.
COLD_BOOT_SINGLE_CPU := 0
# For Chain of Trust
CREATE_KEYS := 1
# Build flag to include AArch32 registers in cpu context save and restore during
# world switch. This flag must be set to 0 for AArch64-only platforms.
CTX_INCLUDE_AARCH32_REGS := 1
# Include FP registers in cpu context
CTX_INCLUDE_FPREGS := 0
# Debug build
DEBUG := 0
# Build platform
DEFAULT_PLAT := fvp
# Flag to enable Performance Measurement Framework
ENABLE_PMF := 0
# Flag to enable PSCI STATs functionality
ENABLE_PSCI_STAT := 0
# Flag to enable runtime instrumentation using PMF
ENABLE_RUNTIME_INSTRUMENTATION := 0
# Flag to enable stack corruption protection
ENABLE_STACK_PROTECTOR := 0
# Build flag to treat usage of deprecated platform and framework APIs as error.
ERROR_DEPRECATED := 0
# Byte alignment that each component in FIP is aligned to
FIP_ALIGN := 0
# Default FIP file name
FIP_NAME := fip.bin
# Default FWU_FIP file name
FWU_FIP_NAME := fwu_fip.bin
# For Chain of Trust
GENERATE_COT := 0
# Hint platform interrupt control layer that Group 0 interrupts are for EL3. By
# default, they are for Secure EL1.
GICV2_G0_FOR_EL3 := 0
# Whether system coherency is managed in hardware, without explicit software
# operations.
HW_ASSISTED_COHERENCY := 0
# Set the default algorithm for the generation of Trusted Board Boot keys
KEY_ALG := rsa
# Flag to enable new version of image loading
LOAD_IMAGE_V2 := 0
# NS timer register save and restore
NS_TIMER_SWITCH := 0
# Build PL011 UART driver in minimal generic UART mode
PL011_GENERIC_UART := 0
# By default, consider that the platform's reset address is not programmable.
# The platform Makefile is free to override this value.
PROGRAMMABLE_RESET_ADDRESS := 0
# Flag used to choose the power state format viz Extended State-ID or the
# Original format.
PSCI_EXTENDED_STATE_ID := 0
# By default, BL1 acts as the reset handler, not BL31
RESET_TO_BL31 := 0
# For Chain of Trust
SAVE_KEYS := 0
# Whether code and read-only data should be put on separate memory pages. The
# platform Makefile is free to override this value.
SEPARATE_CODE_AND_RODATA := 0
# SPD choice
SPD := none
SPM: Introduce Secure Partition Manager A Secure Partition is a software execution environment instantiated in S-EL0 that can be used to implement simple management and security services. Since S-EL0 is an unprivileged exception level, a Secure Partition relies on privileged firmware e.g. ARM Trusted Firmware to be granted access to system and processor resources. Essentially, it is a software sandbox that runs under the control of privileged software in the Secure World and accesses the following system resources: - Memory and device regions in the system address map. - PE system registers. - A range of asynchronous exceptions e.g. interrupts. - A range of synchronous exceptions e.g. SMC function identifiers. A Secure Partition enables privileged firmware to implement only the absolutely essential secure services in EL3 and instantiate the rest in a partition. Since the partition executes in S-EL0, its implementation cannot be overly complex. The component in ARM Trusted Firmware responsible for managing a Secure Partition is called the Secure Partition Manager (SPM). The SPM is responsible for the following: - Validating and allocating resources requested by a Secure Partition. - Implementing a well defined interface that is used for initialising a Secure Partition. - Implementing a well defined interface that is used by the normal world and other secure services for accessing the services exported by a Secure Partition. - Implementing a well defined interface that is used by a Secure Partition to fulfil service requests. - Instantiating the software execution environment required by a Secure Partition to fulfil a service request. Change-Id: I6f7862d6bba8732db5b73f54e789d717a35e802f Co-authored-by: Douglas Raillard <douglas.raillard@arm.com> Co-authored-by: Sandrine Bailleux <sandrine.bailleux@arm.com> Co-authored-by: Achin Gupta <achin.gupta@arm.com> Co-authored-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com> Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
2017-10-24 10:07:35 +01:00
# For including the Secure Partition Manager
ENABLE_SPM := 0
# Flag to introduce an infinite loop in BL1 just before it exits into the next
# image. This is meant to help debugging the post-BL2 phase.
SPIN_ON_BL1_EXIT := 0
# Flags to build TF with Trusted Boot support
TRUSTED_BOARD_BOOT := 0
# Build option to choose whether Trusted firmware uses Coherent memory or not.
USE_COHERENT_MEM := 1
# Use tbbr_oid.h instead of platform_oid.h
USE_TBBR_DEFS = $(ERROR_DEPRECATED)
# Build verbosity
V := 0
# Whether to enable D-Cache early during warm boot. This is usually
# applicable for platforms wherein interconnect programming is not
# required to enable cache coherency after warm reset (eg: single cluster
# platforms).
WARMBOOT_ENABLE_DCACHE_EARLY := 0
# By default, enable Statistical Profiling Extensions.
# The top level Makefile will disable this feature depending on
# the target architecture and version number.
ENABLE_SPE_FOR_LOWER_ELS := 1
# SPE is enabled by default but only supported on AArch64 8.2 onwards.
# Disable it in all other cases.
ifeq (${ARCH},aarch32)
override ENABLE_SPE_FOR_LOWER_ELS := 0
else
ifeq (${ARM_ARCH_MAJOR},8)
ifeq ($(ARM_ARCH_MINOR),$(filter $(ARM_ARCH_MINOR),0 1))
ENABLE_SPE_FOR_LOWER_ELS := 0
endif
endif
endif