Commit Graph

88 Commits

Author SHA1 Message Date
Yatharth Kochar d48c12e928 AArch32: Add generic changes in BL2
This patch adds generic changes in BL2 to support AArch32 state.
New AArch32 specific assembly/C files are introduced and
some files are moved to AArch32/64 specific folders.
BL2 for AArch64 is refactored but functionally identical.

BL2 executes in Secure SVC mode in AArch32 state.

Change-Id: Ifaacbc2a91f8640876385b953adb24744d9dbde3
2016-09-21 16:27:58 +01:00
Yatharth Kochar 42019bf4e9 Changes for new version of image loading in BL1/BL2
This patch adds changes in BL1 & BL2 to use new version
of image loading to load the BL images.

Following are the changes in BL1:
  -Use new version of load_auth_image() to load BL2
  -Modified `bl1_init_bl2_mem_layout()` to remove using
   `reserve_mem()` and to calculate `bl2_mem_layout`.
   `bl2_mem_layout` calculation now assumes that BL1 RW
   data is at the top of the bl1_mem_layout, which is more
   restrictive than the previous BL1 behaviour.

Following are the changes in BL2:
  -The `bl2_main.c` is refactored and all the functions
   for loading BLxx images are now moved to `bl2_image_load.c`
   `bl2_main.c` now calls a top level `bl2_load_images()` to
   load all the images that are applicable in BL2.
  -Added new file `bl2_image_load_v2.c` that uses new version
   of image loading to load the BL images in BL2.

All the above changes are conditionally compiled using the
`LOAD_IMAGE_V2` flag.

Change-Id: Ic6dcde5a484495bdc05526d9121c59fa50c1bf23
2016-09-20 16:16:42 +01:00
Soby Mathew 12ab697e8f Move spinlock library code to AArch64 folder
This patch moves the assembly exclusive lock library code
`spinlock.S` into architecture specific folder `aarch64`.
A stub file which includes the file from new location is
retained at the original location for compatibility. The BL
makefiles are also modified to include the file from the new
location.

Change-Id: Ide0b601b79c439e390c3a017d93220a66be73543
2016-08-09 17:33:57 +01:00
Sandrine Bailleux 5d1c104f9a Introduce SEPARATE_CODE_AND_RODATA build flag
At the moment, all BL images share a similar memory layout: they start
with their code section, followed by their read-only data section.
The two sections are contiguous in memory. Therefore, the end of the
code section and the beginning of the read-only data one might share
a memory page. This forces both to be mapped with the same memory
attributes. As the code needs to be executable, this means that the
read-only data stored on the same memory page as the code are
executable as well. This could potentially be exploited as part of
a security attack.

This patch introduces a new build flag called
SEPARATE_CODE_AND_RODATA, which isolates the code and read-only data
on separate memory pages. This in turn allows independent control of
the access permissions for the code and read-only data.

This has an impact on memory footprint, as padding bytes need to be
introduced between the code and read-only data to ensure the
segragation of the two. To limit the memory cost, the memory layout
of the read-only section has been changed in this case.

 - When SEPARATE_CODE_AND_RODATA=0, the layout is unchanged, i.e.
   the read-only section still looks like this (padding omitted):

   |        ...        |
   +-------------------+
   | Exception vectors |
   +-------------------+
   |  Read-only data   |
   +-------------------+
   |       Code        |
   +-------------------+ BLx_BASE

   In this case, the linker script provides the limits of the whole
   read-only section.

 - When SEPARATE_CODE_AND_RODATA=1, the exception vectors and
   read-only data are swapped, such that the code and exception
   vectors are contiguous, followed by the read-only data. This
   gives the following new layout (padding omitted):

   |        ...        |
   +-------------------+
   |  Read-only data   |
   +-------------------+
   | Exception vectors |
   +-------------------+
   |       Code        |
   +-------------------+ BLx_BASE

   In this case, the linker script now exports 2 sets of addresses
   instead: the limits of the code and the limits of the read-only
   data. Refer to the Firmware Design guide for more details. This
   provides platform code with a finer-grained view of the image
   layout and allows it to map these 2 regions with the appropriate
   access permissions.

Note that SEPARATE_CODE_AND_RODATA applies to all BL images.

Change-Id: I936cf80164f6b66b6ad52b8edacadc532c935a49
2016-07-08 14:55:11 +01:00
Antonio Nino Diaz 68450a6d5b Rename BL33_BASE option to PRELOADED_BL33_BASE
To avoid confusion the build option BL33_BASE has been renamed to
PRELOADED_BL33_BASE, which is more descriptive of what it does and
doesn't get mistaken by similar names like BL32_BASE that work in a
completely different way.

NOTE: PLATFORMS USING BUILD OPTION `BL33_BASE` MUST CHANGE TO THE NEW
BUILD OPTION `PRELOADED_BL33_BASE`.

Change-Id: I658925ebe95406edf0325f15aa1752e1782aa45b
2016-04-08 09:36:48 +01:00
danh-arm 6b1ca8f358 Merge pull request #561 from antonio-nino-diaz-arm/an/bootwrapper
Enable preloaded BL33 alternative boot flow
2016-03-29 15:39:01 +01:00
Antonio Nino Diaz 1c3ea103d2 Remove all non-configurable dead loops
Added a new platform porting function plat_panic_handler, to allow
platforms to handle unexpected error situations. It must be
implemented in assembly as it may be called before the C environment
is initialized. A default implementation is provided, which simply
spins.

Corrected all dead loops in generic code to call this function
instead. This includes the dead loop that occurs at the end of the
call to panic().

All unnecesary wfis from bl32/tsp/aarch64/tsp_exceptions.S have
been removed.

Change-Id: I67cb85f6112fa8e77bd62f5718efcef4173d8134
2016-03-14 16:41:18 +00:00
Antonio Nino Diaz cf2c8a33e0 Enable preloaded BL33 alternative boot flow
Enable alternative boot flow where BL2 does not load BL33 from
non-volatile storage, and BL31 hands execution over to a preloaded
BL33.

The flag used to enable this bootflow is BL33_BASE, which must hold
the entrypoint address of the BL33 image. The User Guide has been
updated with an example of how to use this option with a bootwrapped
kernel.

Change-Id: I48087421a7b0636ac40dca7d457d745129da474f
2016-03-02 16:12:54 +00:00
Juan Castillo d178637d2b Remove dashes from image names: 'BL3-x' --> 'BL3x'
This patch removes the dash character from the image name, to
follow the image terminology in the Trusted Firmware Wiki page:

    https://github.com/ARM-software/arm-trusted-firmware/wiki

Changes apply to output messages, comments and documentation.

non-ARM platform files have been left unmodified.

Change-Id: Ic2a99be4ed929d52afbeb27ac765ceffce46ed76
2015-12-14 12:31:37 +00:00
Juan Castillo f59821d512 Replace all SCP FW (BL0, BL3-0) references
This patch replaces all references to the SCP Firmware (BL0, BL30,
BL3-0, bl30) with the image terminology detailed in the TF wiki
(https://github.com/ARM-software/arm-trusted-firmware/wiki):

    BL0          -->  SCP_BL1
    BL30, BL3-0  -->  SCP_BL2
    bl30         -->  scp_bl2

This change affects code, documentation, build system, tools and
platform ports that load SCP firmware. ARM plaforms have been
updated to the new porting API.

IMPORTANT: build option to specify the SCP FW image has changed:

    BL30 --> SCP_BL2

IMPORTANT: This patch breaks compatibility for platforms that use BL2
to load SCP firmware. Affected platforms must be updated as follows:

    BL30_IMAGE_ID --> SCP_BL2_IMAGE_ID
    BL30_BASE --> SCP_BL2_BASE
    bl2_plat_get_bl30_meminfo() --> bl2_plat_get_scp_bl2_meminfo()
    bl2_plat_handle_bl30() --> bl2_plat_handle_scp_bl2()

Change-Id: I24c4c1a4f0e4b9f17c9e4929da815c4069549e58
2015-12-14 12:31:16 +00:00
Yatharth Kochar 48bfb88eb6 FWU: Add Generic Firmware Update framework support in BL1
Firmware update(a.k.a FWU) feature is part of the TBB architecture.
BL1 is responsible for carrying out the FWU process if platform
specific code detects that it is needed.

This patch adds support for FWU feature support in BL1 which is
included by enabling `TRUSTED_BOARD_BOOT` compile time flag.

This patch adds bl1_fwu.c which contains all the core operations
of FWU, which are; SMC handler, image copy, authentication, execution
and resumption. It also adds bl1.h introducing #defines for all
BL1 SMCs.

Following platform porting functions are introduced:

int bl1_plat_mem_check(uintptr_t mem_base, unsigned int mem_size,
unsigned int flags);
	This function can be used to add platform specific memory checks
	for the provided base/size for the given security state.
	The weak definition will invoke `assert()` and return -ENOMEM.

__dead2 void bl1_plat_fwu_done(void *cookie, void *reserved);
	This function can be used to initiate platform specific procedure
	to mark completion of the FWU process.
	The weak definition waits forever calling `wfi()`.

plat_bl1_common.c contains weak definitions for above functions.

FWU process starts when platform detects it and return the image_id
other than BL2_IMAGE_ID by using `bl1_plat_get_next_image_id()` in
`bl1_main()`.

NOTE: User MUST provide platform specific real definition for
bl1_plat_mem_check() in order to use it for Firmware update.

Change-Id: Ice189a0885d9722d9e1dd03f76cac1aceb0e25ed
2015-12-09 17:41:18 +00:00
Yatharth Kochar 5698c5b3db Remove `RUN_IMAGE` usage as opcode passed to next EL.
The primary usage of `RUN_IMAGE` SMC function id, used by BL2 is to
make a request to BL1 to execute BL31. But BL2 also uses it as
opcode to check if it is allowed to execute which is not the
intended usage of `RUN_IMAGE` SMC.

This patch removes the usage of `RUN_IMAGE` as opcode passed to
next EL to check if it is allowed to execute.

Change-Id: I6aebe0415ade3f43401a4c8a323457f032673657
2015-12-09 17:41:18 +00:00
Sandrine Bailleux 4c117f6c49 CSS: Enable booting of EL3 payloads
This patch adds support for booting EL3 payloads on CSS platforms,
for example Juno. In this scenario, the Trusted Firmware follows
its normal boot flow up to the point where it would normally pass
control to the BL31 image. At this point, it jumps to the EL3
payload entry point address instead.

Before handing over to the EL3 payload, the data SCP writes for AP
at the beginning of the Trusted SRAM is restored, i.e. we zero the
first 128 bytes and restore the SCP Boot configuration. The latter
is saved before transferring the BL30 image to SCP and is restored
just after the transfer (in BL2). The goal is to make it appear that
the EL3 payload is the first piece of software to run on the target.

The BL31 entrypoint info structure is updated to make the primary
CPU jump to the EL3 payload instead of the BL31 image.

The mailbox is populated with the EL3 payload entrypoint address,
which releases the secondary CPUs out of their holding pen (if the
SCP has powered them on). The arm_program_trusted_mailbox() function
has been exported for this purpose.

The TZC-400 configuration in BL2 is simplified: it grants secure
access only to the whole DRAM. Other security initialization is
unchanged.

This alternative boot flow is disabled by default. A new build option
EL3_PAYLOAD_BASE has been introduced to enable it and provide the EL3
payload's entry point address. The build system has been modified
such that BL31 and BL33 are not compiled and/or not put in the FIP in
this case, as those images are not used in this boot flow.

Change-Id: Id2e26fa57988bbc32323a0effd022ab42f5b5077
2015-11-26 21:32:04 +00:00
Juan Castillo 40fc6cd141 Add optional platform error handler API
This patch adds an optional API to the platform port:

    void plat_error_handler(int err) __dead2;

The platform error handler is called when there is a specific error
condition after which Trusted Firmware cannot continue. While panic()
simply prints the crash report (if enabled) and spins, the platform
error handler can be used to hand control over to the platform port
so it can perform specific bookeeping or post-error actions (for
example, reset the system). This function must not return.

The parameter indicates the type of error using standard codes from
errno.h. Possible errors reported by the generic code are:

    -EAUTH  : a certificate or image could not be authenticated
              (when Trusted Board Boot is enabled)
    -ENOENT : the requested image or certificate could not be found
              or an IO error was detected
    -ENOMEM : resources exhausted. Trusted Firmware does not use
              dynamic memory, so this error is usually an indication
              of an incorrect array size

A default weak implementation of this function has been provided.
It simply implements an infinite loop.

Change-Id: Iffaf9eee82d037da6caa43b3aed51df555e597a3
2015-10-28 09:13:40 +00:00
Juan Castillo 78460a05e4 Use standard errno definitions in load_auth_image()
This patch replaces custom definitions used as return values for
the load_auth_image() function with standard error codes defined
in errno.h. The custom definitions have been removed.

It also replaces the usage of IO framework error custom definitions,
which have been deprecated. Standard errno definitions are used
instead.

Change-Id: I1228477346d3876151c05b470d9669c37fd231be
2015-10-23 16:57:52 +01:00
Achin Gupta 54dc71e7ec Make generic code work in presence of system caches
On the ARMv8 architecture, cache maintenance operations by set/way on the last
level of integrated cache do not affect the system cache. This means that such a
flush or clean operation could result in the data being pushed out to the system
cache rather than main memory. Another CPU could access this data before it
enables its data cache or MMU. Such accesses could be serviced from the main
memory instead of the system cache. If the data in the sysem cache has not yet
been flushed or evicted to main memory then there could be a loss of
coherency. The only mechanism to guarantee that the main memory will be updated
is to use cache maintenance operations to the PoC by MVA(See section D3.4.11
(System level caches) of ARMv8-A Reference Manual (Issue A.g/ARM DDI0487A.G).

This patch removes the reliance of Trusted Firmware on the flush by set/way
operation to ensure visibility of data in the main memory. Cache maintenance
operations by MVA are now used instead. The following are the broad category of
changes:

1. The RW areas of BL2/BL31/BL32 are invalidated by MVA before the C runtime is
   initialised. This ensures that any stale cache lines at any level of cache
   are removed.

2. Updates to global data in runtime firmware (BL31) by the primary CPU are made
   visible to secondary CPUs using a cache clean operation by MVA.

3. Cache maintenance by set/way operations are only used prior to power down.

NOTE: NON-UPSTREAM TRUSTED FIRMWARE CODE SHOULD MAKE EQUIVALENT CHANGES IN
ORDER TO FUNCTION CORRECTLY ON PLATFORMS WITH SUPPORT FOR SYSTEM CACHES.

Fixes ARM-software/tf-issues#205

Change-Id: I64f1b398de0432813a0e0881d70f8337681f6e9a
2015-09-14 22:09:40 +01:00
danh-arm 468f808cb8 Merge pull request #368 from jcastillo-arm/jc/genfw/1126
TBB: abort boot if BL3-2 cannot be authenticated
2015-08-21 15:28:30 +01:00
Juan Castillo fedbc0497b TBB: abort boot if BL3-2 cannot be authenticated
BL3-2 image (Secure Payload) is optional. If the image cannot be
loaded a warning message is printed and the boot process continues.
According to the TBBR document, this behaviour should not apply in
case of an authentication error, where the boot process should be
aborted.

This patch modifies the load_auth_image() function to distinguish
between a load error and an authentication error. The caller uses
the return value to abort the boot process or continue.

In case of authentication error, the memory region used to store
the image is wiped clean.

Change-Id: I534391d526d514b2a85981c3dda00de67e0e7992
2015-08-20 16:44:02 +01:00
Soby Mathew 85a181ce38 PSCI: Migrate TF to the new platform API and CM helpers
This patch migrates the rest of Trusted Firmware excluding Secure Payload and
the dispatchers to the new platform and context management API. The per-cpu
data framework APIs which took MPIDRs as their arguments are deleted and only
the ones which take core index as parameter are retained.

Change-Id: I839d05ad995df34d2163a1cfed6baa768a5a595d
2015-08-13 23:48:06 +01:00
Juan Castillo 1779ba6b97 TBB: switch to the new authentication framework
This patch modifies the Trusted Board Boot implementation to use
the new authentication framework, making use of the authentication
module, the cryto module and the image parser module to
authenticate the images in the Chain of Trust.

A new function 'load_auth_image()' has been implemented. When TBB
is enabled, this function will call the authentication module to
authenticate parent images following the CoT up to the root of
trust to finally load and authenticate the requested image.

The platform is responsible for picking up the right makefiles to
build the corresponding cryptographic and image parser libraries.
ARM platforms use the mbedTLS based libraries.

The platform may also specify what key algorithm should be used
to sign the certificates. This is done by declaring the 'KEY_ALG'
variable in the platform makefile. FVP and Juno use ECDSA keys.

On ARM platforms, BL2 and BL1-RW regions have been increased 4KB
each to accommodate the ECDSA code.

REMOVED BUILD OPTIONS:

  * 'AUTH_MOD'

Change-Id: I47d436589fc213a39edf5f5297bbd955f15ae867
2015-06-25 08:53:27 +01:00
Juan Castillo 05799ae0c8 TBB: add authentication framework
This patch adds the authentication framework that will be used as
the base to implement Trusted Board Boot in the Trusted Firmware.
The framework comprises the following modules:

- Image Parser Module (IPM)

    This module is responsible for interpreting images, check
    their integrity and extract authentication information from
    them during Trusted Board Boot.

    The module currently supports three types of images i.e.
    raw binaries, X509v3 certificates and any type specific to
    a platform. An image parser library must be registered for
    each image type (the only exception is the raw image parser,
    which is included in the main module by default).

    Each parser library (if used) must export a structure in a
    specific linker section which contains function pointers to:

        1. Initialize the library
        2. Check the integrity of the image type supported by
           the library
        3. Extract authentication information from the image

- Cryptographic Module (CM)

    This module is responsible for verifying digital signatures
    and hashes. It relies on an external cryptographic library
    to perform the cryptographic operations.

    To register a cryptographic library, the library must use the
    REGISTER_CRYPTO_LIB macro, passing function pointers to:

        1. Initialize the library
        2. Verify a digital signature
        3. Verify a hash

    Failing to register a cryptographic library will generate
    a build time error.

- Authentication Module (AM)

    This module provides methods to authenticate an image, like
    hash comparison or digital signatures. It uses the image parser
    module to extract authentication parameters, the crypto module
    to perform cryptographic operations and the Chain of Trust to
    authenticate the images.

    The Chain of Trust (CoT) is a data structure that defines the
    dependencies between images and the authentication methods
    that must be followed to authenticate an image.

The Chain of Trust, when added, must provide a header file named
cot_def.h with the following definitions:

- COT_MAX_VERIFIED_PARAMS

    Integer value indicating the maximum number of authentication
    parameters an image can present. This value will be used by the
    authentication module to allocate the memory required to load
    the parameters in the image descriptor.

Change-Id: Ied11bd5cd410e1df8767a1df23bb720ce7e58178
2015-06-25 08:53:26 +01:00
Juan Castillo 16948ae1d9 Use numbers to identify images instead of names
The Trusted firmware code identifies BL images by name. The platform
port defines a name for each image e.g. the IO framework uses this
mechanism in the platform function plat_get_image_source(). For
a given image name, it returns the handle to the image file which
involves comparing images names. In addition, if the image is
packaged in a FIP, a name comparison is required to find the UUID
for the image. This method is not optimal.

This patch changes the interface between the generic and platform
code with regard to identifying images. The platform port must now
allocate a unique number (ID) for every image. The generic code will
use the image ID instead of the name to access its attributes.

As a result, the plat_get_image_source() function now takes an image
ID as an input parameter. The organisation of data structures within
the IO framework has been rationalised to use an image ID as an index
into an array which contains attributes of the image such as UUID and
name. This prevents the name comparisons.

A new type 'io_uuid_spec_t' has been introduced in the IO framework
to specify images identified by UUID (i.e. when the image is contained
in a FIP file). There is no longer need to maintain a look-up table
[iname_name --> uuid] in the io_fip driver code.

Because image names are no longer mandatory in the platform port, the
debug messages in the generic code will show the image identifier
instead of the file name. The platforms that support semihosting to
load images (i.e. FVP) must provide the file names as definitions
private to the platform.

The ARM platform ports and documentation have been updated accordingly.
All ARM platforms reuse the image IDs defined in the platform common
code. These IDs will be used to access other attributes of an image in
subsequent patches.

IMPORTANT: applying this patch breaks compatibility for platforms that
use TF BL1 or BL2 images or the image loading code. The platform port
must be updated to match the new interface.

Change-Id: I9c1b04cb1a0684c6ee65dee66146dd6731751ea5
2015-06-25 08:53:26 +01:00
Sandrine Bailleux bcb79b9041 Panic if platform specific BL3-0 handling fails
The return value of bl2_plat_handle_bl30() used to be ignored.
This patch modifies the function load_bl30() so that it now
checks this return value and returns it to bl2_main().

This patch also unifies the error handling code across the
load_blx() functions so that they return a status code in all
cases and bl2_main() has the sole responsibility of panicking
if appropriate.

Change-Id: I2b26cdf65afa443b48c7da1fa7da8db956071bfb
2015-04-13 17:10:46 +01:00
Kévin Petit 8b779620d3 Add support to indicate size and end of assembly functions
In order for the symbol table in the ELF file to contain the size of
functions written in assembly, it is necessary to report it to the
assembler using the .size directive.

To fulfil the above requirements, this patch introduces an 'endfunc'
macro which contains the .endfunc and .size directives. It also adds
a .func directive to the 'func' assembler macro.

The .func/.endfunc have been used so the assembler can fail if
endfunc is omitted.

Fixes ARM-Software/tf-issues#295

Change-Id: If8cb331b03d7f38fe7e3694d4de26f1075b278fc
Signed-off-by: Kévin Petit <kevin.petit@arm.com>
2015-04-08 13:02:59 +01:00
Juan Castillo dec840af4b TBB: authenticate BL3-x images and certificates
This patch adds support to authenticate the Trusted Key certificate
and the BL3-x certificates and images at BL2.

Change-Id: I69a8c13a14c8da8b75f93097d3a4576aed71c5dd
2015-01-28 18:27:54 +00:00
Soby Mathew ab8707e687 Remove coherent memory from the BL memory maps
This patch extends the build option `USE_COHERENT_MEMORY` to
conditionally remove coherent memory from the memory maps of
all boot loader stages. The patch also adds necessary
documentation for coherent memory removal in firmware-design,
porting and user guides.

Fixes ARM-Software/tf-issues#106

Change-Id: I260e8768c6a5c2efc402f5804a80657d8ce38773
2015-01-22 10:57:44 +00:00
Juan Castillo 92de35659c Bug fix: initialize bl30_image_info fields before use
This patch initializes the version field in the bl30_image_info
structure when loading BL30. This initialization must be done before
calling load_image().

Fixes ARM-software/tf-issues#274

Change-Id: I74a05167d66fff51d257ad611abc7b5436e5d912
2015-01-08 09:26:31 +00:00
Juan Castillo ef538c6f1b Juno: Use TZC-400 driver calls
This patch replaces direct accesses to the TZC-400 registers by the
appropiate calls to the generic driver available in the Trusted
Firmware in order to initialize the TrustZone Controller.

Functions related to the initialization of the secure memory,
like the TZC-400 configuration, have been moved to a new file
'plat_security.c'. This reorganization makes easier to set up
the secure memory from any BL stage.

TZC-400 initialization has been moved from BL1 to BL2 because BL1
does not access the non-secure memory. It is BL2's responsibility
to enable and configure the TZC-400 before loading the next BL
images.

In Juno, BL3-0 initializes some of the platform peripherals, like
the DDR controller. Thus, BL3-0 must be loaded before configuring
the TrustZone Controller. As a consequence, the IO layer
initialization has been moved to early platform initialization.

Fixes ARM-software/tf-issues#234

Change-Id: I83dde778f937ac8d2996f7377e871a2e77d9490e
2014-10-09 17:15:24 +01:00
Juan Castillo d7fbf13267 Fix LENGTH attribute value in linker scripts
This patch fixes the incorrect value of the LENGTH attribute in
the linker scripts. This attribute must define the memory size, not
the limit address.

Fixes ARM-software/tf-issues#252

Change-Id: I328c38b9ec502debe12046a8912d7dfc54610c46
2014-09-19 10:00:38 +01:00
Dan Handley a1d80440c4 Merge pull request #189 from achingupta/ag/tf-issues#153
Unmask SError interrupt and clear SCR_EL3.EA bit
2014-08-19 11:04:21 +01:00
Achin Gupta 0c8d4fef28 Unmask SError interrupt and clear SCR_EL3.EA bit
This patch disables routing of external aborts from lower exception levels to
EL3 and ensures that a SError interrupt generated as a result of execution in
EL3 is taken locally instead of a lower exception level.

The SError interrupt is enabled in the TSP code only when the operation has not
been directly initiated by the normal world. This is to prevent the possibility
of an asynchronous external abort which originated in normal world from being
taken when execution is in S-EL1.

Fixes ARM-software/tf-issues#153

Change-Id: I157b996c75996d12fd86d27e98bc73dd8bce6cd5
2014-08-15 10:21:50 +01:00
danh-arm f0e240d7f5 Merge pull request #184 from jcastillo-arm/jc/tf-issues/100
FVP: make usage of Trusted DRAM optional at build time
2014-08-14 09:52:22 +01:00
Dan Handley 6ad2e461f0 Rationalize console log output
Fix the following issues with the console log output:

* Make sure the welcome string is the first thing in the log output
(during normal boot).
* Prefix each message with the BL image name so it's clear which
BL the output is coming from.
* Ensure all output is wrapped in one of the log output macros so it can
be easily compiled out if necessary. Change some of the INFO() messages
to VERBOSE(), especially in the TSP.
* Create some extra NOTICE() and INFO() messages during cold boot.
* Remove all usage of \r in log output.

Fixes ARM-software/tf-issues#231

Change-Id: Ib24f7acb36ce64bbba549f204b9cde2dbb46c8a3
2014-08-12 16:51:18 +01:00
Juan Castillo 637ebd2eb9 FVP: apply new naming conventions to memory regions
Secure ROM at address 0x0000_0000 is defined as FVP_TRUSTED_ROM
Secure RAM at address 0x0400_0000 is defined as FVP_TRUSTED_SRAM
Secure RAM at address 0x0600_0000 is defined as FVP_TRUSTED_DRAM

BLn_BASE and BLn_LIMIT definitions have been updated and are based on
these new memory regions.

The available memory for each bootloader in the linker script is
defined by BLn_BASE and BLn_LIMIT, instead of the complete memory
region.

TZROM_BASE/SIZE and TZRAM_BASE/SIZE are no longer required as part of
the platform porting.

FVP common definitions are defined in fvp_def.h while platform_def.h
contains exclusively (with a few exceptions) the definitions that are
mandatory in the porting guide. Therefore, platform_def.h now includes
fvp_def.h instead of the other way around.

Porting guide has been updated to reflect these changes.

Change-Id: I39a6088eb611fc4a347db0db4b8f1f0417dbab05
2014-08-12 13:34:02 +01:00
Juan Castillo 53fdcebd6d Call platform_is_primary_cpu() only from reset handler
The purpose of platform_is_primary_cpu() is to determine after reset
(BL1 or BL3-1 with reset handler) if the current CPU must follow the
cold boot path (primary CPU), or wait in a safe state (secondary CPU)
until the primary CPU has finished the system initialization.

This patch removes redundant calls to platform_is_primary_cpu() in
subsequent bootloader entrypoints since the reset handler already
guarantees that code is executed exclusively on the primary CPU.

Additionally, this patch removes the weak definition of
platform_is_primary_cpu(), so the implementation of this function
becomes mandatory. Removing the weak symbol avoids other
bootloaders accidentally picking up an invalid definition in case the
porting layer makes the real function available only to BL1.

The define PRIMARY_CPU is no longer mandatory in the platform porting
because platform_is_primary_cpu() hides the implementation details
(for instance, there may be platforms that report the primary CPU in
a system register). The primary CPU definition in FVP has been moved
to fvp_def.h.

The porting guide has been updated accordingly.

Fixes ARM-software/tf-issues#219

Change-Id: If675a1de8e8d25122b7fef147cb238d939f90b5e
2014-08-01 09:39:50 +01:00
danh-arm 9fd412770f Merge pull request #170 from achingupta/ag/tf-issues#226
Simplify management of SCTLR_EL3 and SCTLR_EL1
2014-07-28 14:27:25 +01:00
danh-arm d9b1128b43 Merge pull request #169 from achingupta/ag/tf-issues#198
Ag/tf issues#198
2014-07-28 14:24:52 +01:00
Achin Gupta ec3c10039b Simplify management of SCTLR_EL3 and SCTLR_EL1
This patch reworks the manner in which the M,A, C, SA, I, WXN & EE bits of
SCTLR_EL3 & SCTLR_EL1 are managed. The EE bit is cleared immediately after reset
in EL3. The I, A and SA bits are set next in EL3 and immediately upon entry in
S-EL1. These bits are no longer managed in the blX_arch_setup() functions. They
do not have to be saved and restored either. The M, WXN and optionally the C
bit are set in the enable_mmu_elX() function. This is done during both the warm
and cold boot paths.

Fixes ARM-software/tf-issues#226

Change-Id: Ie894d1a07b8697c116960d858cd138c50bc7a069
2014-07-28 10:10:22 +01:00
Juan Castillo aaa3e722c0 Add support for printing version at runtime
Print out Trusted Firmware version at runtime at each BL stage.
Message consists of TF version as defined statically in the Makefile
(e.g. v0.4), build mode (debug|release) and a customizable build
string:

  1. By defining BUILD_STRING in command line when building TF
  2. Default string is git commit ID
  3. Empty if git meta-data is not available

Fixes ARM-software/tf-issues#203

Change-Id: I5c5ba438f66ab68810427d76b49c5b9177a957d6
2014-07-25 15:02:08 +01:00
Soby Mathew b79af93445 Implement a leaner printf for Trusted Firmware
This patch implements a "tf_printf" which supports only the commonly
used format specifiers in Trusted Firmware, which uses a lot less
stack space than the stdlib printf function.

Fixes ARM-software/tf-issues#116

Change-Id: I7dfa1944f4c1e634b3e2d571f49afe02d109a351
2014-07-25 12:18:33 +01:00
Achin Gupta 754a2b7a09 Remove coherent stack usage from the cold boot path
This patch reworks the cold boot path across the BL1, BL2, BL3-1 and BL3-2 boot
loader stages to not use stacks allocated in coherent memory for early platform
setup and enabling the MMU. Stacks allocated in normal memory are used instead.

Attributes for stack memory change from nGnRnE when the MMU is disabled to
Normal WBWA Inner-shareable when the MMU and data cache are enabled. It is
possible for the CPU to read stale stack memory after the MMU is enabled from
another CPUs cache. Hence, it is unsafe to turn on the MMU and data cache while
using normal stacks when multiple CPUs are a part of the same coherency
domain. It is safe to do so in the cold boot path as only the primary cpu
executes it. The secondary cpus are in a quiescent state.

This patch does not remove the allocation of coherent stack memory. That is done
in a subsequent patch.

Change-Id: I12c80b7c7ab23506d425c5b3a8a7de693498f830
2014-07-19 23:31:50 +01:00
Sandrine Bailleux 93d81d64d3 Add support for BL3-0 image
- Add support for loading a BL3-0 image in BL2. Information about
   memory extents is populated by platform-specific code. Subsequent
   handling of BL3-0 is also platform specific.
   The BL2 main function has been broken down to improve readability.
   The BL3-2 image is now loaded before the BL3-3 image to align with
   the boot flow.

 - Build system: Add support for specifying a BL3-0 image that will be
   included into the FIP image.

 - IO FIP driver: Add support for identifying a BL3-0 image inside a
   FIP image.

 - Update the documentation to reflect the above changes.

Change-Id: I067c184afd52ccaa86569f13664757570c86fc48
2014-07-10 17:06:56 +01:00
Sandrine Bailleux 8f55dfb4ba Remove concept of top/bottom image loading
This concept is no longer required since we now support loading of
images at fixed addresses only.

The image loader now automatically detects the position of the image
inside the current memory layout and updates the layout such that
memory fragmentation is minimised.

The 'attr' field of the meminfo data structure, which used to hold
the bottom/top loading information, has been removed. Also the 'next'
field has been removed as it wasn't used anywhere.

The 'init_bl2_mem_layout()' function has been moved out of common
code and put in BL1-specific code. It has also been renamed into
'bl1_init_bl2_mem_layout'.

Fixes ARM-software/tf-issues#109

Change-Id: I3f54642ce7b763d5ee3b047ad0ab59eabbcf916d
2014-07-01 10:59:43 +01:00
Andrew Thoelke 0346267194 Allow platform parameter X1 to be passed to BL3-1
bl2_main() was overwriting any platform set X1 parameter for BL3-1
with the value zero.

This patch ensure that any platform set value is correctly passed
to BL3-1. The FVP port adds a check to verify this parameter is
being passed correctly.

Fixes ARM-software/tf-issues#173

Change-Id: Ifbcda73d3d41d2b04a4baf5614e9d2d21f1717c8
2014-05-29 11:33:34 +01:00
Dan Handley dec5e0d1da Move BL porting functions into platform.h
Some platform porting functions were in BL specific header files.
These have been moved to platform.h so that all porting functions
are in the same place. The functions are now grouped by BL.
Obsolete BL headers files have been removed.

Also, the weak declaration of the init_bl2_mem_layout() function
has been moved out the header file and into the source file
(bl_common.c) using the more succinct #pragma syntax. This
mitigates the risk of 2 weak definitions being created and the
wrong one being picked up by the compiler.

Change-Id: Ib19934939fd755f3e5a5a5bceec88da684308a83
2014-05-23 17:18:54 +01:00
Dan Handley 5f0cdb059d Split platform.h into separate headers
Previously, platform.h contained many declarations and definitions
used for different purposes. This file has been split so that:

* Platform definitions used by common code that must be defined
  by the platform are now in platform_def.h. The exact include
  path is exported through $PLAT_INCLUDES in the platform makefile.

* Platform definitions specific to the FVP platform are now in
  /plat/fvp/fvp_def.h.

* Platform API declarations specific to the FVP platform are now
  in /plat/fvp/fvp_private.h.

* The remaining platform API declarations that must be ported by
  each platform are still in platform.h but this file has been
  moved to /include/plat/common since this can be shared by all
  platforms.

Change-Id: Ieb3bb22fbab3ee8027413c6b39a783534aee474a
2014-05-23 15:52:29 +01:00
Dan Handley c6bc071020 Remove extern keyword from function declarations
Function declarations implicitly have external linkage so do not
need the extern keyword.

Change-Id: Ia0549786796d8bf5956487e8996450a0b3d79f32
2014-05-23 12:15:54 +01:00
Andrew Thoelke f53d0fce3f Merge pull request #101 from sandrine-bailleux:sb/tf-issue-81-v2 2014-05-23 12:14:37 +01:00
Sandrine Bailleux a37255a205 Make the memory layout more flexible
Currently the platform code gets to define the base address of each
boot loader image. However, the linker scripts couteract this
flexibility by enforcing a fixed overall layout of the different
images. For example, they require that the BL3-1 image sits below
the BL2 image. Choosing BL3-1 and BL2 base addresses in such a way
that it violates this constraint makes the build fail at link-time.

This patch requires the platform code to now define a limit address
for each image. The linker scripts check that the image fits within
these bounds so they don't rely anymore on the position of a given
image in regard to the others.

Fixes ARM-software/tf-issues#163

Change-Id: I8c108646825da19a6a8dfb091b613e1dd4ae133c
2014-05-23 11:05:44 +01:00
Dan Handley 1151c82101 Allow BL3-2 platform definitions to be optional
The generic image loading and IO FIP code no longer forces the
platform to create BL3-2 (Secure-EL1 Payload) specific
definitions. The BL3-2 loading code in bl2/bl2main.c is wrapped
by a #ifdef BL32_BASE blocks, allowing the BL3-2 definitions to
be optional. Similarly for the name_uuid array defintion in
drivers/io/io_fip.c.

Also update the porting guide to reflect this change.

The BL3-2 platform definitions remain non-configurably present
in the FVP port.

Fixes ARM-software/tf-issues#68

Change-Id: Iea28b4e94d87a31f5522f271e290919a8a955460
2014-05-22 23:15:36 +01:00