Upstream fork of ATF with a couple of rk3399 patches to remove HDCP blob and increase BAUD_RATE.
Go to file
Andrew Thoelke ee7b35c4e1 Re-design bakery lock memory allocation and algorithm
This patch unifies the bakery lock api's across coherent and normal
memory implementation of locks by using same data type `bakery_lock_t`
and similar arguments to functions.

A separate section `bakery_lock` has been created and used to allocate
memory for bakery locks using `DEFINE_BAKERY_LOCK`. When locks are
allocated in normal memory, each lock for a core has to spread
across multiple cache lines. By using the total size allocated in a
separate cache line for a single core at compile time, the memory for
other core locks is allocated at link time by multiplying the single
core locks size with (PLATFORM_CORE_COUNT - 1). The normal memory lock
algorithm now uses lock address instead of the `id` in the per_cpu_data.
For locks allocated in coherent memory, it moves locks from
tzfw_coherent_memory to bakery_lock section.

The bakery locks are allocated as part of bss or in coherent memory
depending on usage of coherent memory. Both these regions are
initialised to zero as part of run_time_init before locks are used.
Hence, bakery_lock_init() is made an empty function as the lock memory
is already initialised to zero.

The above design lead to the removal of psci bakery locks from
non_cpu_power_pd_node to psci_locks.

NOTE: THE BAKERY LOCK API WHEN USE_COHERENT_MEM IS NOT SET HAS CHANGED.
THIS IS A BREAKING CHANGE FOR ALL PLATFORM PORTS THAT ALLOCATE BAKERY
LOCKS IN NORMAL MEMORY.

Change-Id: Ic3751c0066b8032dcbf9d88f1d4dc73d15f61d8b
2015-09-11 16:19:21 +01:00
bl1 Ensure BL2 security state is secure 2015-09-02 13:48:45 +01:00
bl2 Merge pull request #368 from jcastillo-arm/jc/genfw/1126 2015-08-21 15:28:30 +01:00
bl31 Re-design bakery lock memory allocation and algorithm 2015-09-11 16:19:21 +01:00
bl32/tsp PSCI: Migrate SPDs and TSP to the new platform and framework API 2015-08-13 23:48:07 +01:00
common Ensure BL2 security state is secure 2015-09-02 13:48:45 +01:00
docs Re-design bakery lock memory allocation and algorithm 2015-09-11 16:19:21 +01:00
drivers Remove EL2/EL1 GICv3 register updates 2015-09-01 12:44:00 +01:00
fdts FVP: update device tree idle state entries 2015-04-29 14:57:12 +01:00
include Re-design bakery lock memory allocation and algorithm 2015-09-11 16:19:21 +01:00
lib Re-design bakery lock memory allocation and algorithm 2015-09-11 16:19:21 +01:00
plat Merge pull request #382 from vikramkanigiri/vk/tf-issues-312 2015-09-02 12:29:48 +01:00
services Re-design bakery lock memory allocation and algorithm 2015-09-11 16:19:21 +01:00
tools TBB: rework cert_create tool to follow a data driven approach 2015-07-16 14:31:20 +01:00
.gitignore TBB: rework cert_create tool to follow a data driven approach 2015-07-16 14:31:20 +01:00
Makefile PSCI: Add deprecated API for SPD when compatibility is disabled 2015-08-13 23:48:06 +01:00
acknowledgements.md TLK-D documentation and add NVIDIA to the Acknowledgements file 2015-03-31 10:11:47 +05:30
contributing.md Update contributing.md with new integration process 2014-04-01 11:22:43 +01:00
license.md Update year in copyright text to 2014 2014-01-17 10:27:53 +00:00
readme.md Documentation for version 1.1 2015-02-03 11:43:43 +00:00

readme.md

ARM Trusted Firmware - version 1.1

ARM Trusted Firmware provides a reference implementation of secure world software for ARMv8-A, including Exception Level 3 (EL3) software. This release provides complete support for version 0.2 of the PSCI specification, initial support for the new version 1.0 of that specification, and prototype support for the Trusted Board Boot Requirements specification.

The intent is to provide a reference implementation of various ARM interface standards, such as the Power State Coordination Interface (PSCI), Trusted Board Boot Requirements (TBBR) and [Secure Monitor] TEE-SMC code. As far as possible the code is designed for reuse or porting to other ARMv8-A model and hardware platforms.

ARM will continue development in collaboration with interested parties to provide a full reference implementation of PSCI, TBBR and Secure Monitor code to the benefit of all developers working with ARMv8-A TrustZone technology.

License

The software is provided under a BSD 3-Clause license. Certain source files are derived from FreeBSD code: the original license is included in these source files.

This Release

This release is a limited functionality implementation of the Trusted Firmware. It provides a suitable starting point for productization. Future versions will contain new features, optimizations and quality improvements.

Functionality

  • Prototype implementation of a subset of the Trusted Board Boot Requirements Platform Design Document (PDD). This includes packaging the various firmware images into a Firmware Image Package (FIP) to be loaded from non-volatile storage, and a prototype of authenticated boot using key certificates stored in the FIP.

  • Initializes the secure world (for example, exception vectors, control registers, GIC and interrupts for the platform), before transitioning into the normal world.

  • Supports both GICv2 and GICv3 initialization for use by normal world software.

  • Starts the normal world at the Exception Level and Register Width specified by the platform port. Typically this is AArch64 EL2 if available.

  • Handles SMCs (Secure Monitor Calls) conforming to the [SMC Calling Convention PDD] SMCCC using an EL3 runtime services framework.

  • Handles SMCs relating to the [Power State Coordination Interface PDD] PSCI for the Secondary CPU Boot, CPU Hotplug, CPU Idle and System Shutdown/Reset use-cases.

  • A Test Secure-EL1 Payload and Dispatcher to demonstrate Secure Monitor functionality such as world switching, EL1 context management and interrupt routing. This also demonstrates Secure-EL1 interaction with PSCI. Some of this functionality is provided in library form for re-use by other Secure-EL1 Payload Dispatchers.

  • Support for alternative Trusted Boot Firmware. Some platforms have their own Trusted Boot implementation and only require the Secure Monitor functionality provided by ARM Trusted Firmware.

  • Isolation of memory accessible by the secure world from the normal world through programming of a TrustZone controller.

  • Support for CPU specific reset sequences, power down sequences and register dumping during crash reporting. The CPU specific reset sequences include support for errata workarounds.

For a full description of functionality and implementation details, please see the Firmware Design and supporting documentation. The Change Log provides details of changes made since the last release.

Platforms

This release of the Trusted Firmware has been tested on Revision B of the [Juno ARM Development Platform] Juno with Version r0p0-00rel7 of the [ARM SCP Firmware] SCP download.

The Trusted Firmware has also been tested on the 64-bit Linux versions of the following ARM FVPs:

  • Foundation_Platform (Version 9.1, Build 9.1.33)
  • FVP_Base_AEMv8A-AEMv8A (Version 6.2, Build 0.8.6202)
  • FVP_Base_Cortex-A57x4-A53x4 (Version 6.2, Build 0.8.6202)
  • FVP_Base_Cortex-A57x1-A53x1 (Version 6.2, Build 0.8.6202)
  • FVP_Base_Cortex-A57x2-A53x4 (Version 6.2, Build 0.8.6202)

The Foundation FVP can be downloaded free of charge. The Base FVPs can be licensed from ARM: see [www.arm.com/fvp] FVP.

Still to Come

  • Complete and more flexible Trusted Board Boot implementation.

  • Complete implementation of the PSCI v1.0 specification.

  • Support for alternative types of Secure-EL1 Payloads.

  • Extending the GICv3 support to the secure world.

  • Support for new System IP devices.

For a full list of detailed issues in the current code, please see the Change Log and the GitHub issue tracker.

Getting Started

Get the Trusted Firmware source code from GitHub.

See the User Guide for instructions on how to install, build and use the Trusted Firmware with the ARM FVPs.

See the Firmware Design for information on how the ARM Trusted Firmware works.

See the Porting Guide as well for information about how to use this software on another ARMv8-A platform.

See the Contributing Guidelines for information on how to contribute to this project and the Acknowledgments file for a list of contributors to the project.

Feedback and support

ARM welcomes any feedback on the Trusted Firmware. Please send feedback using the GitHub issue tracker.

ARM licensees may contact ARM directly via their partner managers.


Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved.