arm-trusted-firmware/docs/user-guide.md

1358 lines
61 KiB
Markdown
Raw Permalink Normal View History

2013-10-25 09:08:21 +01:00
ARM Trusted Firmware User Guide
===============================
Contents :
1. [Introduction](#1--introduction)
2. [Host machine requirements](#2--host-machine-requirements)
3. [Tools](#3--tools)
4. [Getting the Trusted Firmware source code](#4--getting-the-trusted-firmware-source-code)
5. [Building the Trusted Firmware](#5--building-the-trusted-firmware)
6. [Building the rest of the software stack](#6--building-the-rest-of-the-software-stack)
7. [EL3 payloads alternative boot flow](#7--el3-payloads-alternative-boot-flow)
8. [Preparing the images to run on FVP](#8--preparing-the-images-to-run-on-fvp)
9. [Running the software on FVP](#9--running-the-software-on-fvp)
10. [Running the software on Juno](#10--running-the-software-on-juno)
11. [Changes required for booting Linux on FVP in GICv3 mode](#11--changes-required-for-booting-linux-on-fvp-in-gicv3-mode)
2013-10-25 09:08:21 +01:00
1. Introduction
----------------
This document describes how to build ARM Trusted Firmware and run it with a
tested set of other software components using defined configurations on the Juno
ARM development platform and ARM Fixed Virtual Platform (FVP) models. It is
possible to use other software components, configurations and platforms but that
is outside the scope of this document.
2013-10-25 09:08:21 +01:00
This document should be used in conjunction with the [Firmware Design] and the
[Instructions for using the Linaro software deliverables][Linaro SW Instructions].
2013-10-25 09:08:21 +01:00
2. Host machine requirements
-----------------------------
2013-10-25 09:08:21 +01:00
The minimum recommended machine specification for building the software and
running the FVP models is a dual-core processor running at 2GHz with 12GB of
RAM. For best performance, use a machine with a quad-core processor running at
2.6GHz with 16GB of RAM.
The software has been tested on Ubuntu 14.04 LTS (64-bit). Packages used for
building the software were installed from that distribution unless otherwise
specified.
2013-10-25 09:08:21 +01:00
3. Tools
---------
2013-10-25 09:08:21 +01:00
In addition to the mandatory prerequisite tools listed in the [instructions for
using the Linaro software deliverables][Linaro SW Instructions], the following
optional tools may be needed:
* `device-tree-compiler` package if you need to rebuild the Flattened Device
Tree (FDT) source files (`.dts` files) provided with this software.
2013-10-25 09:08:21 +01:00
* For debugging, ARM [Development Studio 5 (DS-5)][DS-5] v5.22.
2013-10-25 09:08:21 +01:00
4. Getting the Trusted Firmware source code
--------------------------------------------
The Trusted Firmware (TF) source code can be obtained as part of the standard
Linaro releases, which provide a full software stack, including TF, normal
world firmware, Linux kernel and device tree, file system as well as any
additional micro-controller firmware required by the platform. This TF version
is tested with the [Linaro 15.10 Release][Linaro Release Notes].
Note 1: Both the LSK kernel or the latest tracking kernel can be used with TF;
choose the one that best suits your needs.
Note 2: Currently to run the latest tracking kernel on FVP with GICv3 driver,
some modifications are required to UEFI. Refer
[here](#11--changes-required-for-booting-linux-on-fvp-in-gicv3-mode)
for more details.
The TF source code will then be in `arm-tf/`. This is the upstream git
repository cloned from GitHub. The revision checked out by the `repo` tool is
indicated by the manifest file. Depending on the manifest file you're using,
this might not be the latest upstream version. To synchronize your copy of the
repository and get the latest updates, use the following commands:
# Change to the Trusted Firmware directory.
cd arm-tf
# Download the latest code from GitHub.
git fetch github
2013-10-25 09:08:21 +01:00
# Update your working copy to the latest master.
# This command will create a local branch master that tracks the remote
# branch master from GitHub.
git checkout --track github/master
2013-10-25 09:08:21 +01:00
Alternatively, the TF source code can be separately cloned from the upstream
GitHub repository:
2013-10-25 09:08:21 +01:00
git clone https://github.com/ARM-software/arm-trusted-firmware.git
2013-10-25 09:08:21 +01:00
5. Building the Trusted Firmware
---------------------------------
To build the Trusted Firmware images, change to the root directory of the
Trusted Firmware source tree and follow these steps:
1. Set the compiler path, specify a Non-trusted Firmware image (BL33) and
a valid platform, and then build:
2013-10-25 09:08:21 +01:00
CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu- \
BL33=<path-to>/<bl33_image> \
make PLAT=<platform> all fip
2013-10-25 09:08:21 +01:00
If `PLAT` is not specified, `fvp` is assumed by default. See the "Summary of
build options" for more information on available build options.
The BL33 image corresponds to the software that is executed after switching
to the non-secure world. UEFI can be used as the BL33 image. Refer to the
"Building the rest of the software stack" section below.
The TSP (Test Secure Payload), corresponding to the BL32 image, is not
compiled in by default. Refer to the "Building the Test Secure Payload"
section below.
2013-10-25 09:08:21 +01:00
By default this produces a release version of the build. To produce a debug
version instead, refer to the "Debugging options" section below.
2013-10-25 09:08:21 +01:00
The build process creates products in a `build` directory tree, building
the objects and binaries for each boot loader stage in separate
sub-directories. The following boot loader binary files are created from
the corresponding ELF files:
2013-10-25 09:08:21 +01:00
* `build/<platform>/<build-type>/bl1.bin`
* `build/<platform>/<build-type>/bl2.bin`
* `build/<platform>/<build-type>/bl31.bin`
2013-10-25 09:08:21 +01:00
where `<platform>` is the name of the chosen platform and `<build-type>` is
either `debug` or `release`. A Firmware Image Package (FIP) will be created
as part of the build. It contains all boot loader images except for
`bl1.bin`.
2013-10-25 09:08:21 +01:00
* `build/<platform>/<build-type>/fip.bin`
For more information on FIPs, see the "Firmware Image Package" section in
the [Firmware Design].
2. (Optional) Some platforms may require a SCP_BL2 image to boot. This image can
be included in the FIP when building the Trusted Firmware by specifying the
`SCP_BL2` build option:
SCP_BL2=<path-to>/<scp_bl2_image>
3. Output binary files `bl1.bin` and `fip.bin` are both required to boot the
system. How these files are used is platform specific. Refer to the
platform documentation on how to use the firmware images.
2013-10-25 09:08:21 +01:00
4. (Optional) Build products for a specific build variant can be removed using:
make DEBUG=<D> PLAT=<platform> clean
... where `<D>` is `0` or `1`, as specified when building.
The build tree can be removed completely using:
make realclean
2013-10-25 09:08:21 +01:00
5. (Optional) Path to binary for certain BL stages (BL2, BL31 and BL32) can be
provided by specifying the BLx=<path-to>/<blx_image> where BLx is the BL stage.
This will bypass the build of the BL component from source, but will include
the specified binary in the final FIP image. Please note that BL32 will be
included in the build, only if the `SPD` build option is specified.
For example, specifying `BL2=<path-to>/<bl2_image>` in the build option,
will skip compilation of BL2 source in trusted firmware, but include the BL2
binary specified in the final FIP image.
### Summary of build options
ARM Trusted Firmware build system supports the following build options. Unless
mentioned otherwise, these options are expected to be specified at the build
command line and are not to be modified in any component makefiles. Note that
the build system doesn't track dependency for build options. Therefore, if any
of the build options are changed from a previous build, a clean build must be
performed.
#### Common build options
* `SCP_BL2`: Path to SCP_BL2 image in the host file system. This image is optional.
If a SCP_BL2 image is present then this option must be passed for the `fip`
target.
* `BL33`: Path to BL33 image in the host file system. This is mandatory for
`fip` target in case the BL2 from ARM Trusted Firmware is used.
* `BL2`: This is an optional build option which specifies the path to BL2
image for the `fip` target. In this case, the BL2 in the ARM Trusted
Firmware will not be built.
* `BL31`: This is an optional build option which specifies the path to
BL31 image for the `fip` target. In this case, the BL31 in the ARM
Trusted Firmware will not be built.
* `BL32`: This is an optional build option which specifies the path to
BL32 image for the `fip` target. In this case, the BL32 in the ARM
Trusted Firmware will not be built.
* `FIP_NAME`: This is an optional build option which specifies the FIP
filename for the `fip` target. Default is `fip.bin`.
* `FWU_FIP_NAME`: This is an optional build option which specifies the FWU
FIP filename for the `fwu_fip` target. Default is `fwu_fip.bin`.
* `BL2U`: This is an optional build option which specifies the path to
BL2U image. In this case, the BL2U in the ARM Trusted Firmware will not
be built.
* `SCP_BL2U`: Path to SCP_BL2U image in the host file system. This image is
optional. It is only needed if the platform makefile specifies that it
is required in order to build the `fwu_fip` target.
* `NS_BL2U`: Path to NS_BL2U image in the host file system. This image is
optional. It is only needed if the platform makefile specifies that it
is required in order to build the `fwu_fip` target.
* `CROSS_COMPILE`: Prefix to toolchain binaries. Please refer to examples in
this document for usage.
* `DEBUG`: Chooses between a debug and release build. It can take either 0
(release) or 1 (debug) as values. 0 is the default.
* `LOG_LEVEL`: Chooses the log level, which controls the amount of console log
output compiled into the build. This should be one of the following:
0 (LOG_LEVEL_NONE)
10 (LOG_LEVEL_NOTICE)
20 (LOG_LEVEL_ERROR)
30 (LOG_LEVEL_WARNING)
40 (LOG_LEVEL_INFO)
50 (LOG_LEVEL_VERBOSE)
All log output up to and including the log level is compiled into the build.
The default value is 40 in debug builds and 20 in release builds.
* `NS_TIMER_SWITCH`: Enable save and restore for non-secure timer register
contents upon world switch. It can take either 0 (don't save and restore) or
1 (do save and restore). 0 is the default. An SPD may set this to 1 if it
wants the timer registers to be saved and restored.
* `PLAT`: Choose a platform to build ARM Trusted Firmware for. The chosen
platform name must be subdirectory of any depth under `plat/`, and must
contain a platform makefile named `platform.mk`.
* `SPD`: Choose a Secure Payload Dispatcher component to be built into the
Trusted Firmware. The value should be the path to the directory containing
the SPD source, relative to `services/spd/`; the directory is expected to
contain a makefile called `<spd-value>.mk`.
* `V`: Verbose build. If assigned anything other than 0, the build commands
are printed. Default is 0.
2013-10-25 09:08:21 +01:00
* `ARM_GIC_ARCH`: Choice of ARM GIC architecture version used by the ARM
Legacy GIC driver for implementing the platform GIC API. This API is used
by the interrupt management framework. Default is 2 (that is, version 2.0).
This build option is deprecated.
2014-05-09 10:03:15 +01:00
* `ARM_CCI_PRODUCT_ID`: Choice of ARM CCI product used by the platform. This
is used to determine the number of valid slave interfaces available in the
ARM CCI driver. Default is 400 (that is, CCI-400).
* `RESET_TO_BL31`: Enable BL31 entrypoint as the CPU reset vector instead
of the BL1 entrypoint. It can take the value 0 (CPU reset to BL1
entrypoint) or 1 (CPU reset to BL31 entrypoint).
The default value is 0.
* `CRASH_REPORTING`: A non-zero value enables a console dump of processor
register state when an unexpected exception occurs during execution of
BL31. This option defaults to the value of `DEBUG` - i.e. by default
this is only enabled for a debug build of the firmware.
* `ASM_ASSERTION`: This flag determines whether the assertion checks within
assembly source files are enabled or not. This option defaults to the
value of `DEBUG` - that is, by default this is only enabled for a debug
build of the firmware.
* `TSP_INIT_ASYNC`: Choose BL32 initialization method as asynchronous or
synchronous, (see "Initializing a BL32 Image" section in [Firmware
Design]). It can take the value 0 (BL32 is initialized using
synchronous method) or 1 (BL32 is initialized using asynchronous method).
Default is 0.
* `USE_COHERENT_MEM`: This flag determines whether to include the coherent
memory region in the BL memory map or not (see "Use of Coherent memory in
Trusted Firmware" section in [Firmware Design]). It can take the value 1
(Coherent memory region is included) or 0 (Coherent memory region is
excluded). Default is 1.
* `TSP_NS_INTR_ASYNC_PREEMPT`: A non zero value enables the interrupt
routing model which routes non-secure interrupts asynchronously from TSP
to EL3 causing immediate preemption of TSP. The EL3 is responsible
for saving and restoring the TSP context in this routing model. The
default routing model (when the value is 0) is to route non-secure
interrupts to TSP allowing it to save its context and hand over
synchronously to EL3 via an SMC.
* `TRUSTED_BOARD_BOOT`: Boolean flag to include support for the Trusted Board
Boot feature. When set to '1', BL1 and BL2 images include support to load
and verify the certificates and images in a FIP, and BL1 includes support
for the Firmware Update. The default value is '0'. Generation and inclusion
of certificates in the FIP and FWU_FIP depends upon the value of the
`GENERATE_COT` option.
* `GENERATE_COT`: Boolean flag used to build and execute the `cert_create`
tool to create certificates as per the Chain of Trust described in
[Trusted Board Boot]. The build system then calls the `fip_create` tool to
include the certificates in the FIP and FWU_FIP. Default value is '0'.
Specify both `TRUSTED_BOARD_BOOT=1` and `GENERATE_COT=1` to include support
for the Trusted Board Boot feature in the BL1 and BL2 images, to generate
the corresponding certificates, and to include those certificates in the
FIP and FWU_FIP.
Note that if `TRUSTED_BOARD_BOOT=0` and `GENERATE_COT=1`, the BL1 and BL2
images will not include support for Trusted Board Boot. The FIP will still
include the corresponding certificates. This FIP can be used to verify the
Chain of Trust on the host machine through other mechanisms.
Note that if `TRUSTED_BOARD_BOOT=1` and `GENERATE_COT=0`, the BL1 and BL2
images will include support for Trusted Board Boot, but the FIP and FWU_FIP
will not include the corresponding certificates, causing a boot failure.
* `CREATE_KEYS`: This option is used when `GENERATE_COT=1`. It tells the
certificate generation tool to create new keys in case no valid keys are
present or specified. Allowed options are '0' or '1'. Default is '1'.
* `SAVE_KEYS`: This option is used when `GENERATE_COT=1`. It tells the
certificate generation tool to save the keys used to establish the Chain of
Trust. Allowed options are '0' or '1'. Default is '0' (do not save).
Note: This option depends on 'CREATE_KEYS' to be enabled. If the keys
already exist in disk, they will be overwritten without further notice.
* `ROT_KEY`: This option is used when `GENERATE_COT=1`. It specifies the
file that contains the ROT private key in PEM format. If `SAVE_KEYS=1`, this
file name will be used to save the key.
* `TRUSTED_WORLD_KEY`: This option is used when `GENERATE_COT=1`. It
specifies the file that contains the Trusted World private key in PEM
format. If `SAVE_KEYS=1`, this file name will be used to save the key.
* `NON_TRUSTED_WORLD_KEY`: This option is used when `GENERATE_COT=1`. It
specifies the file that contains the Non-Trusted World private key in PEM
format. If `SAVE_KEYS=1`, this file name will be used to save the key.
* `SCP_BL2_KEY`: This option is used when `GENERATE_COT=1`. It specifies the
file that contains the SCP_BL2 private key in PEM format. If `SAVE_KEYS=1`,
this file name will be used to save the key.
* `BL31_KEY`: This option is used when `GENERATE_COT=1`. It specifies the
file that contains the BL31 private key in PEM format. If `SAVE_KEYS=1`,
this file name will be used to save the key.
* `BL32_KEY`: This option is used when `GENERATE_COT=1`. It specifies the
file that contains the BL32 private key in PEM format. If `SAVE_KEYS=1`,
this file name will be used to save the key.
* `BL33_KEY`: This option is used when `GENERATE_COT=1`. It specifies the
file that contains the BL33 private key in PEM format. If `SAVE_KEYS=1`,
this file name will be used to save the key.
* `PROGRAMMABLE_RESET_ADDRESS`: This option indicates whether the reset
vector address can be programmed or is fixed on the platform. It can take
either 0 (fixed) or 1 (programmable). Default is 0. If the platform has a
programmable reset address, it is expected that a CPU will start executing
code directly at the right address, both on a cold and warm reset. In this
case, there is no need to identify the entrypoint on boot and the boot path
can be optimised. The `plat_get_my_entrypoint()` platform porting interface
does not need to be implemented in this case.
* `COLD_BOOT_SINGLE_CPU`: This option indicates whether the platform may
release several CPUs out of reset. It can take either 0 (several CPUs may be
brought up) or 1 (only one CPU will ever be brought up during cold reset).
Default is 0. If the platform always brings up a single CPU, there is no
need to distinguish between primary and secondary CPUs and the boot path can
be optimised. The `plat_is_my_cpu_primary()` and
`plat_secondary_cold_boot_setup()` platform porting interfaces do not need
to be implemented in this case.
PSCI: Add framework to handle composite power states The state-id field in the power-state parameter of a CPU_SUSPEND call can be used to describe composite power states specific to a platform. The current PSCI implementation does not interpret the state-id field. It relies on the target power level and the state type fields in the power-state parameter to perform state coordination and power management operations. The framework introduced in this patch allows the PSCI implementation to intepret generic global states like RUN, RETENTION or OFF from the State-ID to make global state coordination decisions and reduce the complexity of platform ports. It adds support to involve the platform in state coordination which facilitates the use of composite power states and improves the support for entering standby states at multiple power domains. The patch also includes support for extended state-id format for the power state parameter as specified by PSCIv1.0. The PSCI implementation now defines a generic representation of the power-state parameter. It depends on the platform port to convert the power-state parameter (possibly encoding a composite power state) passed in a CPU_SUSPEND call to this representation via the `validate_power_state()` plat_psci_ops handler. It is an array where each index corresponds to a power level. Each entry contains the local power state the power domain at that power level could enter. The meaning of the local power state values is platform defined, and may vary between levels in a single platform. The PSCI implementation constrains the values only so that it can classify the state as RUN, RETENTION or OFF as required by the specification: * zero means RUN * all OFF state values at all levels must be higher than all RETENTION state values at all levels * the platform provides PLAT_MAX_RET_STATE and PLAT_MAX_OFF_STATE values to the framework The platform also must define the macros PLAT_MAX_RET_STATE and PLAT_MAX_OFF_STATE which lets the PSCI implementation find out which power domains have been requested to enter a retention or power down state. The PSCI implementation does not interpret the local power states defined by the platform. The only constraint is that the PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE. For a power domain tree, the generic implementation maintains an array of local power states. These are the states requested for each power domain by all the cores contained within the domain. During a request to place multiple power domains in a low power state, the platform is passed an array of requested power-states for each power domain through the plat_get_target_pwr_state() API. It coordinates amongst these states to determine a target local power state for the power domain. A default weak implementation of this API is provided in the platform layer which returns the minimum of the requested power-states back to the PSCI state coordination. Finally, the plat_psci_ops power management handlers are passed the target local power states for each affected power domain using the generic representation described above. The platform executes operations specific to these target states. The platform power management handler for placing a power domain in a standby state (plat_pm_ops_t.pwr_domain_standby()) is now only used as a fast path for placing a core power domain into a standby or retention state should now be used to only place the core power domain in a standby or retention state. The extended state-id power state format can be enabled by setting the build flag PSCI_EXTENDED_STATE_ID=1 and it is disabled by default. Change-Id: I9d4123d97e179529802c1f589baaa4101759d80c
2015-04-07 12:16:56 +01:00
* `PSCI_EXTENDED_STATE_ID`: As per PSCI1.0 Specification, there are 2 formats
possible for the PSCI power-state parameter viz original and extended
State-ID formats. This flag if set to 1, configures the generic PSCI layer
to use the extended format. The default value of this flag is 0, which
means by default the original power-state format is used by the PSCI
implementation. This flag should be specified by the platform makefile
and it governs the return value of PSCI_FEATURES API for CPU_SUSPEND
smc function id.
* `ERROR_DEPRECATED`: This option decides whether to treat the usage of
deprecated platform APIs, helper functions or drivers within Trusted
Firmware as error. It can take the value 1 (flag the use of deprecated
APIs as error) or 0. The default is 0.
* `SPIN_ON_BL1_EXIT`: This option introduces an infinite loop in BL1. It can
take either 0 (no loop) or 1 (add a loop). 0 is the default. This loop stops
execution in BL1 just before handing over to BL31. At this point, all
firmware images have been loaded in memory, and the MMU and caches are
turned off. Refer to the "Debugging options" section for more details.
* `EL3_PAYLOAD_BASE`: This option enables booting an EL3 payload instead of
the normal boot flow. It must specify the entry point address of the EL3
payload. Please refer to the "Booting an EL3 payload" section for more
details.
* `PL011_GENERIC_UART`: Boolean option to indicate the PL011 driver that
the underlying hardware is not a full PL011 UART but a minimally compliant
generic UART, which is a subset of the PL011. The driver will not access
any register that is not part of the SBSA generic UART specification.
Default value is 0 (a full PL011 compliant UART is present).
#### ARM development platform specific build options
* `ARM_TSP_RAM_LOCATION`: location of the TSP binary. Options:
- `tsram` : Trusted SRAM (default option)
- `tdram` : Trusted DRAM (if available)
- `dram` : Secure region in DRAM (configured by the TrustZone controller)
For a better understanding of these options, the ARM development platform memory
map is explained in the [Firmware Design].
* `ARM_ROTPK_LOCATION`: used when `TRUSTED_BOARD_BOOT=1`. It specifies the
location of the ROTPK hash returned by the function `plat_get_rotpk_info()`
for ARM platforms. Depending on the selected option, the proper private key
must be specified using the `ROT_KEY` option when building the Trusted
Firmware. This private key will be used by the certificate generation tool
to sign the BL2 and Trusted Key certificates. Available options for
`ARM_ROTPK_LOCATION` are:
- `regs` : return the ROTPK hash stored in the Trusted root-key storage
registers. The private key corresponding to this ROTPK hash is not
currently available.
- `devel_rsa` : return a development public key hash embedded in the BL1
and BL2 binaries. This hash has been obtained from the RSA public key
`arm_rotpk_rsa.der`, located in `plat/arm/board/common/rotpk`. To use
this option, `arm_rotprivk_rsa.pem` must be specified as `ROT_KEY` when
creating the certificates.
* `ARM_RECOM_STATE_ID_ENC`: The PSCI1.0 specification recommends an encoding
for the construction of composite state-ID in the power-state parameter.
The existing PSCI clients currently do not support this encoding of
State-ID yet. Hence this flag is used to configure whether to use the
recommended State-ID encoding or not. The default value of this flag is 0,
in which case the platform is configured to expect NULL in the State-ID
field of power-state parameter.
* `ARM_DISABLE_TRUSTED_WDOG`: boolean option to disable the Trusted Watchdog.
By default, ARM platforms use a watchdog to trigger a system reset in case
an error is encountered during the boot process (for example, when an image
could not be loaded or authenticated). The watchdog is enabled in the early
platform setup hook at BL1 and disabled in the BL1 prepare exit hook. The
Trusted Watchdog may be disabled at build time for testing or development
purposes.
#### ARM CSS platform specific build options
* `CSS_DETECT_PRE_1_7_0_SCP`: Boolean flag to detect SCP version
incompatibility. Version 1.7.0 of the SCP firmware made a non-backwards
compatible change to the MTL protocol, used for AP/SCP communication.
Trusted Firmware no longer supports earlier SCP versions. If this option is
set to 1 then Trusted Firmware will detect if an earlier version is in use.
Default is 1.
#### ARM FVP platform specific build options
* `FVP_USE_GIC_DRIVER` : Selects the GIC driver to be built. Options:
- `FVP_GICV2` : The GICv2 only driver is selected
- `FVP_GICV3` : The GICv3 only driver is selected (default option)
- `FVP_GICV3_LEGACY`: The Legacy GICv3 driver is selected (deprecated).
Note that if the FVP is configured for legacy VE memory map, then ARM
Trusted Firmware must be compiled with GICv2 only driver using
`FVP_USE_GIC_DRIVER=FVP_GICV2` build option.
### Creating a Firmware Image Package
FIPs are automatically created as part of the build instructions described in
the previous section. It is also possible to independently build the FIP
creation tool and FIPs if required. To do this, follow these steps:
Build the tool:
make -C tools/fip_create
It is recommended to remove the build artifacts before rebuilding:
make -C tools/fip_create clean
Create a Firmware package that contains existing BL2 and BL31 images:
# fip_create --help to print usage information
# fip_create <fip_name> <images to add> [--dump to show result]
./tools/fip_create/fip_create fip.bin --dump \
--bl2 build/<platform>/debug/bl2.bin --bl31 build/<platform>/debug/bl31.bin
Firmware Image Package ToC:
---------------------------
- Trusted Boot Firmware BL2: offset=0x88, size=0x81E8
file: 'build/<platform>/debug/bl2.bin'
- EL3 Runtime Firmware BL31: offset=0x8270, size=0xC218
file: 'build/<platform>/debug/bl31.bin'
---------------------------
Creating "fip.bin"
View the contents of an existing Firmware package:
./tools/fip_create/fip_create fip.bin --dump
Firmware Image Package ToC:
---------------------------
- Trusted Boot Firmware BL2: offset=0x88, size=0x81E8
- EL3 Runtime Firmware BL31: offset=0x8270, size=0xC218
---------------------------
Existing package entries can be individually updated:
# Change the BL2 from Debug to Release version
./tools/fip_create/fip_create fip.bin --dump \
--bl2 build/<platform>/release/bl2.bin
Firmware Image Package ToC:
---------------------------
- Trusted Boot Firmware BL2: offset=0x88, size=0x7240
file: 'build/<platform>/release/bl2.bin'
- EL3 Runtime Firmware BL31: offset=0x72C8, size=0xC218
---------------------------
Updating "fip.bin"
### Debugging options
2013-10-25 09:08:21 +01:00
To compile a debug version and make the build more verbose use
CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu- \
BL33=<path-to>/<bl33_image> \
make PLAT=<platform> DEBUG=1 V=1 all fip
2013-10-25 09:08:21 +01:00
AArch64 GCC uses DWARF version 4 debugging symbols by default. Some tools (for
example DS-5) might not support this and may need an older version of DWARF
symbols to be emitted by GCC. This can be achieved by using the
`-gdwarf-<version>` flag, with the version being set to 2 or 3. Setting the
version to 2 is recommended for DS-5 versions older than 5.16.
When debugging logic problems it might also be useful to disable all compiler
optimizations by using `-O0`.
NOTE: Using `-O0` could cause output images to be larger and base addresses
might need to be recalculated (see the **Memory layout on ARM development
platforms** section in the [Firmware Design]).
2013-10-25 09:08:21 +01:00
Extra debug options can be passed to the build system by setting `CFLAGS`:
CFLAGS='-O0 -gdwarf-2' \
CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu- \
BL33=<path-to>/<bl33_image> \
make PLAT=<platform> DEBUG=1 V=1 all fip
2013-10-25 09:08:21 +01:00
It is also possible to introduce an infinite loop to help in debugging the
post-BL2 phase of the Trusted Firmware. This can be done by rebuilding BL1 with
the `SPIN_ON_BL1_EXIT=1` build flag. Refer to the "Summary of build options"
section. In this case, the developer may take control of the target using a
debugger when indicated by the console output. When using DS-5, the following
commands can be used:
# Stop target execution
interrupt
#
# Prepare your debugging environment, e.g. set breakpoints
#
# Jump over the debug loop
set var $AARCH64::$Core::$PC = $AARCH64::$Core::$PC + 4
# Resume execution
continue
2013-10-25 09:08:21 +01:00
### Building the Test Secure Payload
The TSP is coupled with a companion runtime service in the BL31 firmware,
called the TSPD. Therefore, if you intend to use the TSP, the BL31 image
must be recompiled as well. For more information on SPs and SPDs, see the
"Secure-EL1 Payloads and Dispatchers" section in the [Firmware Design].
First clean the Trusted Firmware build directory to get rid of any previous
BL31 binary. Then to build the TSP image and include it into the FIP use:
CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu- \
BL33=<path-to>/<bl33_image> \
make PLAT=<platform> SPD=tspd all fip
An additional boot loader binary file is created in the `build` directory:
* `build/<platform>/<build-type>/bl32.bin`
The FIP will now contain the additional BL32 image. Here is an example
output from an FVP build in release mode including BL32 and using
`FVP_AARCH64_EFI.fd` as BL33 image:
Firmware Image Package ToC:
---------------------------
- Trusted Boot Firmware BL2: offset=0xD8, size=0x6000
file: './build/fvp/release/bl2.bin'
- EL3 Runtime Firmware BL31: offset=0x60D8, size=0x9000
file: './build/fvp/release/bl31.bin'
- Secure Payload BL32 (Trusted OS): offset=0xF0D8, size=0x3000
file: './build/fvp/release/bl32.bin'
- Non-Trusted Firmware BL33: offset=0x120D8, size=0x280000
file: '../FVP_AARCH64_EFI.fd'
---------------------------
Creating "build/fvp/release/fip.bin"
### Building the Certificate Generation Tool
The `cert_create` tool can be built separately through the following commands:
$ cd tools/cert_create
$ make PLAT=<platform> [DEBUG=1] [V=1]
`DEBUG=1` builds the tool in debug mode. `V=1` makes the build process more
verbose. The following command should be used to obtain help about the tool:
$ ./cert_create -h
The `cert_create` tool is automatically built with the `fip` target when
`GENERATE_COT=1`.
### Building FIP images with support for Trusted Board Boot
Trusted Board Boot primarily consists of the following two features:
* Image Authentication, described in [Trusted Board Boot], and
* Firmware Update, described in [Firmware Update]
The following steps should be followed to build FIP and (optionally) FWU_FIP
images with support for these features:
1. Fulfill the dependencies of the `mbedtls` cryptographic and image parser
modules by checking out a recent version of the [mbed TLS Repository]. It
is important to use a version that is compatible with TF and fixes any
known security vulnerabilities. See [mbed TLS Security Center] for more
information. This version of TF is tested with tag `mbedtls-2.2.0`.
The `drivers/auth/mbedtls/mbedtls_*.mk` files contain the list of mbed TLS
source files the modules depend upon.
`include/drivers/auth/mbedtls/mbedtls_config.h` contains the configuration
options required to build the mbed TLS sources.
Note that the mbed TLS library is licensed under the Apache version 2.0
license. Using mbed TLS source code will affect the licensing of
Trusted Firmware binaries that are built using this library.
2. To build the FIP image, ensure the following command line variables are set
while invoking `make` to build Trusted Firmware:
* `MBEDTLS_DIR=<path of the directory containing mbed TLS sources>`
* `TRUSTED_BOARD_BOOT=1`
* `GENERATE_COT=1`
In the case of ARM platforms, the location of the ROTPK hash must also be
specified at build time. Two locations are currently supported (see
`ARM_ROTPK_LOCATION` build option):
* `ARM_ROTPK_LOCATION=regs`: the ROTPK hash is obtained from the Trusted
root-key storage registers present in the platform. On Juno, this
registers are read-only. On FVP Base and Cortex models, the registers
are read-only, but the value can be specified using the command line
option `bp.trusted_key_storage.public_key` when launching the model.
On both Juno and FVP models, the default value corresponds to an
ECDSA-SECP256R1 public key hash, whose private part is not currently
available.
* `ARM_ROTPK_LOCATION=devel_rsa`: use the ROTPK hash that is hardcoded
in the ARM platform port. The private/public RSA key pair may be
found in `plat/arm/board/common/rotpk`.
Example of command line using RSA development keys:
CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu- \
BL33=<path-to>/<bl33_image> \
MBEDTLS_DIR=<path of the directory containing mbed TLS sources> \
make PLAT=<platform> TRUSTED_BOARD_BOOT=1 GENERATE_COT=1 \
ARM_ROTPK_LOCATION=devel_rsa \
ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem \
all fip
The result of this build will be the bl1.bin and the fip.bin binaries, with
the difference that the FIP will include the certificates corresponding to
the Chain of Trust described in the TBBR-client document. These certificates
can also be found in the output build directory.
3. The optional FWU_FIP contains any additional images to be loaded from
Non-Volatile storage during the [Firmware Update] process. To build the
FWU_FIP, any FWU images required by the platform must be specified on the
command line. On ARM development platforms like Juno, these are:
* NS_BL2U. The AP non-secure Firmware Updater image.
* SCP_BL2U. The SCP Firmware Update Configuration image.
Example of Juno command line for generating both `fwu` and `fwu_fip`
targets using RSA development:
CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
BL33=<path-to>/<bl33_image> \
SCP_BL2=<path-to>/<scp_bl2_image> \
SCP_BL2U=<path-to>/<scp_bl2u_image> \
NS_BL2U=<path-to>/<ns_bl2u_image> \
MBEDTLS_DIR=<path of the directory containing mbed TLS sources> \
make PLAT=juno TRUSTED_BOARD_BOOT=1 GENERATE_COT=1 \
ARM_ROTPK_LOCATION=devel_rsa \
ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem \
all fip fwu_fip
Note: The BL2U image will be built by default and added to the FWU_FIP.
The user may override this by adding `BL2U=<path-to>/<bl2u_image>`
to the command line above.
Note: Building and installing the non-secure and SCP FWU images (NS_BL1U,
NS_BL2U and SCP_BL2U) is outside the scope of this document.
The result of this build will be bl1.bin, fip.bin and fwu_fip.bin binaries.
Both the FIP and FWU_FIP will include the certificates corresponding to the
Chain of Trust described in the TBBR-client document. These certificates
can also be found in the output build directory.
### Checking source code style
When making changes to the source for submission to the project, the source
must be in compliance with the Linux style guide, and to assist with this check
the project Makefile contains two targets, which both utilise the
`checkpatch.pl` script that ships with the Linux source tree.
To check the entire source tree, you must first download a copy of
`checkpatch.pl` (or the full Linux source), set the `CHECKPATCH` environment
variable to point to the script and build the target checkcodebase:
make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkcodebase
To just check the style on the files that differ between your local branch and
the remote master, use:
make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkpatch
If you wish to check your patch against something other than the remote master,
set the `BASE_COMMIT` variable to your desired branch. By default, `BASE_COMMIT`
is set to `origin/master`.
6. Building the rest of the software stack
-------------------------------------------
The Linaro release provides a set of scripts that automate the process of
building all components of the software stack. However, the scripts only support
a limited number of Trusted Firmware build options. Therefore, it is recommended
to modify these scripts to build all components except Trusted Firmware, and
build Trusted Firmware separately as described in the section "Building the
Trusted Firmware" above.
The instructions below are targeted at an OpenEmbedded filesystem.
2013-10-25 09:08:21 +01:00
1. To exclude Trusted Firmware from the automated build process, edit the
variant file `build-scripts/variants/<platform>-oe`, where `<platform>`
is either `fvp` or `juno`. Add the following lines at the end of the file:
2013-10-25 09:08:21 +01:00
# Disable ARM Trusted Firmware build
ARM_TF_BUILD_ENABLED=0
2. Launch the build script:
2013-10-25 09:08:21 +01:00
CROSS_COMPILE=aarch64-linux-gnu- \
build-scripts/build-all.sh <platform>-oe
2013-10-25 09:08:21 +01:00
### Preparing the Firmware Image Package
2013-10-25 09:08:21 +01:00
The EDK2 binary should be specified as `BL33` in the `make` command line when
building the Trusted Firmware. See the "Building the Trusted Firmware" section
above. The EDK2 binary for use with the ARM Trusted Firmware can be found here:
2013-10-25 09:08:21 +01:00
uefi/edk2/Build/ArmVExpress-FVP-AArch64-Minimal/DEBUG_GCC49/FV/FVP_AARCH64_EFI.fd [for FVP]
uefi/edk2/Build/ArmJuno/DEBUG_GCC49/FV/BL33_AP_UEFI.fd [for Juno]
2013-10-25 09:08:21 +01:00
### Building an alternative EDK2
2013-10-25 09:08:21 +01:00
* By default, EDK2 is built in debug mode. To build a release version instead,
change the following line in the variant file:
UEFI_BUILD_MODE=DEBUG
into:
UEFI_BUILD_MODE=RELEASE
2013-10-25 09:08:21 +01:00
* On FVP, if legacy GICv2 locations are used, the EDK2 platform makefile must
be updated. This is required as EDK2 does not support probing for the GIC
location. To do this, first clean the EDK2 build directory:
2013-10-25 09:08:21 +01:00
build-scripts/build-uefi.sh fvp-oe clean
2013-10-25 09:08:21 +01:00
Then edit the following file:
2013-10-25 09:08:21 +01:00
uefi/edk2/ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.mak
and add the following build flag into the `EDK2_MACROS` variable:
-D ARM_FVP_LEGACY_GICV2_LOCATION=1
Then rebuild everything as described above in step 2.
Finally rebuild the Trusted Firmware to generate a new FIP using the
instructions in the "Building the Trusted Firmware" section.
2013-10-25 09:08:21 +01:00
7. EL3 payloads alternative boot flow
--------------------------------------
On a pre-production system, the ability to execute arbitrary, bare-metal code at
the highest exception level is required. It allows full, direct access to the
hardware, for example to run silicon soak tests.
Although it is possible to implement some baremetal secure firmware from
scratch, this is a complex task on some platforms, depending on the level of
configuration required to put the system in the expected state.
Rather than booting a baremetal application, a possible compromise is to boot
`EL3 payloads` through the Trusted Firmware instead. This is implemented as an
alternative boot flow, where a modified BL2 boots an EL3 payload, instead of
loading the other BL images and passing control to BL31. It reduces the
complexity of developing EL3 baremetal code by:
* putting the system into a known architectural state;
* taking care of platform secure world initialization;
* loading the SCP_BL2 image if required by the platform.
When booting an EL3 payload on ARM standard platforms, the configuration of the
TrustZone controller is simplified such that only region 0 is enabled and is
configured to permit secure access only. This gives full access to the whole
DRAM to the EL3 payload.
The system is left in the same state as when entering BL31 in the default boot
flow. In particular:
* Running in EL3;
* Current state is AArch64;
* Little-endian data access;
* All exceptions disabled;
* MMU disabled;
* Caches disabled.
8. Preparing the images to run on FVP
--------------------------------------
2013-10-25 09:08:21 +01:00
Note: This section can be ignored when booting an EL3 payload, as no Flattened
Device Tree or kernel image is needed in this case.
### Obtaining the Flattened Device Trees
2013-10-25 09:08:21 +01:00
Depending on the FVP configuration and Linux configuration used, different
FDT files are required. FDTs for the Foundation and Base FVPs can be found in
the Trusted Firmware source directory under `fdts/`. The Foundation FVP has a
subset of the Base FVP components. For example, the Foundation FVP lacks CLCD
and MMC support, and has only one CPU cluster.
2013-10-25 09:08:21 +01:00
Note: It is not recommended to use the FDTs built along the kernel because not
all FDTs are available from there.
2013-10-25 09:08:21 +01:00
* `fvp-base-gicv2-psci.dtb`
(Default) For use with both AEMv8 and Cortex-A57-A53 Base FVPs with
Base memory map configuration.
2013-10-25 09:08:21 +01:00
* `fvp-base-gicv2legacy-psci.dtb`
For use with AEMv8 Base FVP with legacy VE GIC memory map configuration.
2013-10-25 09:08:21 +01:00
* `fvp-base-gicv3-psci.dtb`
For use with both AEMv8 and Cortex-A57-A53 Base FVPs with Base memory map
configuration and Linux GICv3 support.
2013-10-25 09:08:21 +01:00
* `fvp-foundation-gicv2-psci.dtb`
(Default) For use with Foundation FVP with Base memory map configuration.
* `fvp-foundation-gicv2legacy-psci.dtb`
For use with Foundation FVP with legacy VE GIC memory map configuration.
* `fvp-foundation-gicv3-psci.dtb`
For use with Foundation FVP with Base memory map configuration and Linux
GICv3 support.
2013-10-25 09:08:21 +01:00
Copy the chosen FDT blob as `fdt.dtb` to the directory from which the FVP
is launched. Alternatively a symbolic link may be used.
2013-10-25 09:08:21 +01:00
### Preparing the kernel image
Copy the kernel image file `linux/arch/arm64/boot/Image` to the directory from
which the FVP is launched. Alternatively a symbolic link may be used.
2013-10-25 09:08:21 +01:00
9. Running the software on FVP
-------------------------------
2013-10-25 09:08:21 +01:00
This version of the ARM Trusted Firmware has been tested on the following ARM
2013-10-25 09:08:21 +01:00
FVPs (64-bit versions only).
* `Foundation_Platform` (Version 9.4, Build 9.4.59)
* `FVP_Base_AEMv8A-AEMv8A` (Version 7.0, Build 0.8.7004)
* `FVP_Base_Cortex-A57x4-A53x4` (Version 7.0, Build 0.8.7004)
* `FVP_Base_Cortex-A57x1-A53x1` (Version 7.0, Build 0.8.7004)
* `FVP_Base_Cortex-A57x2-A53x4` (Version 7.0, Build 0.8.7004)
NOTE: The build numbers quoted above are those reported by launching the FVP
with the `--version` parameter.
NOTE: The software will not work on Version 1.0 of the Foundation FVP.
The commands below would report an `unhandled argument` error in this case.
2013-10-25 09:08:21 +01:00
NOTE: The Foundation FVP does not provide a debugger interface.
The Foundation FVP is a cut down version of the AArch64 Base FVP. It can be
downloaded for free from [ARM's website][ARM FVP website].
The Linaro release provides a script to run the software on FVP. However, it
only supports a limited number of model parameter options. Therefore, it is
recommended to launch the FVP manually for all use cases described below.
Please refer to the FVP documentation for a detailed description of the model
parameter options. A brief description of the important ones that affect the ARM
Trusted Firmware and normal world software behavior is provided below.
### Running on the Foundation FVP with reset to BL1 entrypoint
The following `Foundation_Platform` parameters should be used to boot Linux with
4 CPUs using the ARM Trusted Firmware.
<path-to>/Foundation_Platform \
--cores=4 \
--secure-memory \
--visualization \
--gicv3 \
--data="<path-to>/<bl1-binary>"@0x0 \
--data="<path-to>/<FIP-binary>"@0x08000000 \
--data="<path-to>/<fdt>"@0x83000000 \
--data="<path-to>/<kernel-binary>"@0x80080000 \
--block-device="<path-to>/<file-system-image>"
1. The `--data="<path-to-some-binary>"@0x...` parameters are used to load
binaries into memory.
* BL1 is loaded at the start of the Trusted ROM.
* The Firmware Image Package is loaded at the start of NOR FLASH0.
* The Linux kernel image and device tree are loaded in DRAM.
2. The `--block-device` parameter is used to specify the path to the file
system image provided to Linux via VirtioBlock. Note that it must point to
the real file and that a symbolic link to this file cannot be used with the
FVP.
The default use-case for the Foundation FVP is to enable the GICv3 device in
the model but use the GICv2 FDT, in order for Linux to drive the GIC in GICv2
emulation mode.
### Notes regarding Base FVP configuration options
2013-10-25 09:08:21 +01:00
Please refer to these notes in the subsequent "Running on the Base FVP"
sections.
2013-10-25 09:08:21 +01:00
1. The `-C bp.flashloader0.fname` parameter is used to load a Firmware Image
Package at the start of NOR FLASH0 (see the "Building the Trusted Firmware"
section above).
2013-10-25 09:08:21 +01:00
2. Using `cache_state_modelled=1` makes booting very slow. The software will
still work (and run much faster) without this option but this will hide any
cache maintenance defects in the software.
3. The `-C bp.virtioblockdevice.image_path` parameter is used to specify the
path to the file system image provided to Linux via VirtioBlock. Note that
it must point to the real file and that a symbolic link to this file cannot
be used with the FVP. Ensure that the FVP doesn't output any error messages.
If the following error message is displayed:
ERROR: BlockDevice: Failed to open "<path-to>/<file-system-image>"!
then make sure the path to the file-system image in the model parameter is
correct and that read permission is correctly set on the file-system image
file.
4. Setting the `-C bp.secure_memory` parameter to `1` is only supported on
Base FVP versions 5.4 and newer. Setting this parameter to `0` is also
supported. The `-C bp.tzc_400.diagnostics=1` parameter is optional. It
instructs the FVP to provide some helpful information if a secure memory
violation occurs.
5. The `--data="<path-to-some-binary>"@<base-address-of-binary>` parameter is
used to load images into Base FVP memory. The base addresses used should
match the image base addresses used while linking the images. This parameter
is used to load the Linux kernel image and device tree into DRAM.
6. This and the following notes only apply when the firmware is built with
the `RESET_TO_BL31` option.
The `--data="<path-to><bl31|bl32|bl33-binary>"@<base-address-of-binary>`
parameter is needed to load the individual bootloader images in memory.
BL32 image is only needed if BL31 has been built to expect a Secure-EL1
Payload.
7. The `-C cluster<X>.cpu<Y>.RVBAR=@<base-address-of-bl31>` parameter, where
X and Y are the cluster and CPU numbers respectively, is used to set the
reset vector for each core.
8. Changing the default value of `ARM_TSP_RAM_LOCATION` will also require
changing the value of
`--data="<path-to><bl32-binary>"@<base-address-of-bl32>` to the new value of
`BL32_BASE`.
2013-10-25 09:08:21 +01:00
### Running on the AEMv8 Base FVP with reset to BL1 entrypoint
Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.
The following `FVP_Base_AEMv8A-AEMv8A` parameters should be used to boot Linux
with 8 CPUs using the ARM Trusted Firmware.
<path-to>/FVP_Base_AEMv8A-AEMv8A \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cluster0.NUM_CORES=4 \
-C cluster1.NUM_CORES=4 \
-C cache_state_modelled=1 \
-C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
-C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
--data cluster0.cpu0="<path-to>/<fdt>"@0x83000000 \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
-C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
2013-10-25 09:08:21 +01:00
### Running on the Cortex-A57-A53 Base FVP with reset to BL1 entrypoint
Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.
2013-10-25 09:08:21 +01:00
The following `FVP_Base_Cortex-A57x4-A53x4` model parameters should be used to
boot Linux with 8 CPUs using the ARM Trusted Firmware.
<path-to>/FVP_Base_Cortex-A57x4-A53x4 \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cache_state_modelled=1 \
-C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
-C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
--data cluster0.cpu0="<path-to>/<fdt>"@0x83000000 \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
-C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
2013-10-25 09:08:21 +01:00
### Running on the AEMv8 Base FVP with reset to BL31 entrypoint
Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.
The following `FVP_Base_AEMv8A-AEMv8A` parameters should be used to boot Linux
with 8 CPUs using the ARM Trusted Firmware.
<path-to>/FVP_Base_AEMv8A-AEMv8A \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cluster0.NUM_CORES=4 \
-C cluster1.NUM_CORES=4 \
-C cache_state_modelled=1 \
-C cluster0.cpu0.RVBAR=0x04023000 \
-C cluster0.cpu1.RVBAR=0x04023000 \
-C cluster0.cpu2.RVBAR=0x04023000 \
-C cluster0.cpu3.RVBAR=0x04023000 \
-C cluster1.cpu0.RVBAR=0x04023000 \
-C cluster1.cpu1.RVBAR=0x04023000 \
-C cluster1.cpu2.RVBAR=0x04023000 \
-C cluster1.cpu3.RVBAR=0x04023000 \
--data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04023000 \
--data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04001000 \
--data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
--data cluster0.cpu0="<path-to>/<fdt>"@0x83000000 \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
-C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
### Running on the Cortex-A57-A53 Base FVP with reset to BL31 entrypoint
Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.
The following `FVP_Base_Cortex-A57x4-A53x4` model parameters should be used to
boot Linux with 8 CPUs using the ARM Trusted Firmware.
<path-to>/FVP_Base_Cortex-A57x4-A53x4 \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cache_state_modelled=1 \
-C cluster0.cpu0.RVBARADDR=0x04023000 \
-C cluster0.cpu1.RVBARADDR=0x04023000 \
-C cluster0.cpu2.RVBARADDR=0x04023000 \
-C cluster0.cpu3.RVBARADDR=0x04023000 \
-C cluster1.cpu0.RVBARADDR=0x04023000 \
-C cluster1.cpu1.RVBARADDR=0x04023000 \
-C cluster1.cpu2.RVBARADDR=0x04023000 \
-C cluster1.cpu3.RVBARADDR=0x04023000 \
--data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04023000 \
--data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04001000 \
--data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
--data cluster0.cpu0="<path-to>/<fdt>"@0x83000000 \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
-C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
2013-10-25 09:08:21 +01:00
### Configuring the GICv2 memory map
The Base FVP models support GICv2 with the default model parameters at the
following addresses. The Foundation FVP also supports these addresses when
configured for GICv3 in GICv2 emulation mode.
2013-10-25 09:08:21 +01:00
GICv2 Distributor Interface 0x2f000000
GICv2 CPU Interface 0x2c000000
GICv2 Virtual CPU Interface 0x2c010000
GICv2 Hypervisor Interface 0x2c02f000
The AEMv8 Base FVP can be configured to support GICv2 at addresses
corresponding to the legacy (Versatile Express) memory map as follows. These are
the default addresses when using the Foundation FVP in GICv2 mode.
2013-10-25 09:08:21 +01:00
GICv2 Distributor Interface 0x2c001000
GICv2 CPU Interface 0x2c002000
GICv2 Virtual CPU Interface 0x2c004000
GICv2 Hypervisor Interface 0x2c006000
The choice of memory map is reflected in the build variant field (bits[15:12])
in the `SYS_ID` register (Offset `0x0`) in the Versatile Express System
registers memory map (`0x1c010000`).
2013-10-25 09:08:21 +01:00
* `SYS_ID.Build[15:12]`
`0x1` corresponds to the presence of the Base GIC memory map. This is the
default value on the Base FVPs.
2013-10-25 09:08:21 +01:00
* `SYS_ID.Build[15:12]`
`0x0` corresponds to the presence of the Legacy VE GIC memory map. This is
the default value on the Foundation FVP.
This register can be configured as described in the following sections.
2013-10-25 09:08:21 +01:00
NOTE: If the legacy VE GIC memory map is used, then Trusted Firmware must be
compiled with the GICv2 only driver, and the corresponding FDT and BL33 images
should be used.
2013-10-25 09:08:21 +01:00
#### Configuring AEMv8 Foundation FVP GIC for legacy VE memory map
The following parameters configure the Foundation FVP to use GICv2 with the
legacy VE memory map:
<path-to>/Foundation_Platform \
--cores=4 \
--secure-memory \
--visualization \
--no-gicv3 \
--data="<path-to>/<bl1-binary>"@0x0 \
--data="<path-to>/<FIP-binary>"@0x8000000 \
--block-device="<path-to>/<file-system-image>"
Explicit configuration of the `SYS_ID` register is not required.
#### Configuring AEMv8 Base FVP GIC for legacy VE memory map
2013-10-25 09:08:21 +01:00
The following parameters configure the AEMv8 Base FVP to use GICv2 with the
legacy VE memory map. They must added to the parameters described in the
"Running on the AEMv8 Base FVP" section above:
2013-10-25 09:08:21 +01:00
-C cluster0.gic.GICD-offset=0x1000 \
-C cluster0.gic.GICC-offset=0x2000 \
-C cluster0.gic.GICH-offset=0x4000 \
-C cluster0.gic.GICH-other-CPU-offset=0x5000 \
-C cluster0.gic.GICV-offset=0x6000 \
-C cluster0.gic.PERIPH-size=0x8000 \
-C cluster1.gic.GICD-offset=0x1000 \
-C cluster1.gic.GICC-offset=0x2000 \
-C cluster1.gic.GICH-offset=0x4000 \
-C cluster1.gic.GICH-other-CPU-offset=0x5000 \
-C cluster1.gic.GICV-offset=0x6000 \
-C cluster1.gic.PERIPH-size=0x8000 \
-C gic_distributor.GICD-alias=0x2c001000 \
-C gicv3.gicv2-only=1 \
-C bp.variant=0x0
2013-10-25 09:08:21 +01:00
The `bp.variant` parameter corresponds to the build variant field of the
`SYS_ID` register. Setting this to `0x0` allows the ARM Trusted Firmware to
detect the legacy VE memory map while configuring the GIC.
2013-10-25 09:08:21 +01:00
### Booting an EL3 payload on FVP
2013-10-25 09:08:21 +01:00
Booting an EL3 payload on FVP requires a couple of changes to the way the
model is normally invoked.
First of all, the EL3 payload image is not part of the FIP and is not loaded by
the Trusted Firmware. Therefore, it must be loaded in memory some other way.
There are 2 ways of doing that:
1. It can be loaded over JTAG at the appropriate time. The infinite loop
introduced in BL1 when compiling the Trusted Firmware with
`SPIN_ON_BL1_EXIT=1` stops execution at the right moment for a debugger to
take control of the target and load the payload.
2. It can be pre-loaded in the FVP memory using the following model parameter:
2013-10-25 09:08:21 +01:00
--data="<path-to-binary>"@<base-address-of-binary>
The base address provided to the FVP must match the `EL3_PAYLOAD_BASE`
address used when building the Trusted Firmware.
Secondly, the EL3 payloads boot flow requires the CPUs mailbox to be cleared
at reset for the secondary CPUs holding pen to work properly. Unfortunately,
its reset value is undefined on FVP. One way to clear it is to create an
8-byte file containing all zero bytes and pre-load it into the FVP memory at the
mailbox address (i.e. `0x04000000`) using the same `--data` FVP parameter as
described above.
The following command creates such a file called `mailbox.dat`:
dd if=/dev/zero of=mailbox.dat bs=1 count=8
10. Running the software on Juno
---------------------------------
This version of the ARM Trusted Firmware has been tested on Juno r0 and Juno r1.
To execute the software stack on Juno, the version of the Juno board recovery
image indicated in the [Linaro Release Notes] must be installed. If you have an
earlier version installed or are unsure which version is installed, please
re-install the recovery image by following the [Instructions for using Linaro's
deliverables on Juno][Juno Instructions].
### Preparing Trusted Firmware images
The Juno platform requires a SCP_BL1 and a SCP_BL2 image to boot up. The
SCP_BL1 image contains the ROM firmware that runs on the SCP (System Control
Processor), whereas the SCP_BL2 image contains the SCP Runtime firmware. Both
images are embedded within the Juno board recovery image, these are the files
`bl0.bin` and `bl30.bin`, respectively. Please note that these filenames still
use the old terminology.
The SCP_BL2 file must be part of the FIP image. Therefore, its path must be
supplied using the `SCP_BL2` variable on the command line when building the
FIP. Please refer to the section "Building the Trusted Firmware".
After building Trusted Firmware, the files `bl1.bin` and `fip.bin` need copying
to the `SOFTWARE/` directory of the Juno SD card.
### Other Juno software information
Please visit the [ARM Platforms Portal] to get support and obtain any other Juno
software information. Please also refer to the [Juno Getting Started Guide] to
get more detailed information about the Juno ARM development platform and how to
configure it.
### Testing SYSTEM SUSPEND on Juno
The SYSTEM SUSPEND is a PSCI API which can be used to implement system suspend
to RAM. For more details refer to section 5.16 of [PSCI]. The [Linaro Release
Notes] point to the required SCP and motherboard firmware binaries supporting
this feature on Juno. The mainline linux kernel does not yet have support for
this feature on Juno but it is queued to be merged in v4.4. Till that becomes
available, the feature can be tested by using a custom kernel built from the
following repository:
git clone git://git.kernel.org/pub/scm/linux/kernel/git/lpieralisi/linux.git
cd linux
git checkout firmware/psci-1.0
Configure the linux kernel:
export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
make ARCH=arm64 defconfig
The feature is tested conveniently by using the RTC. Enable the RTC driver in
menuconfig
make ARCH=arm64 menuconfig
The PL031 RTC driver can be enabled at the following location in menuconfig
ARM AMBA PL031 RTC
| Location:
| -> Device Drivers
| -> Real Time Clock
Build the kernel
make ARCH=arm64 Image -j8
Replace the kernel image in the `SOFTWARE/` directory of the Juno SD card with
the `Image` from `arch/arm64/boot/` of the linux directory.
Reset the board and wait for it to boot. At the shell prompt issue the
following command:
echo +10 > /sys/class/rtc/rtc1/wakealarm
echo -n mem > /sys/power/state
The Juno board should suspend to RAM and then wakeup after 10 seconds due to
wakeup interrupt from RTC.
11. Changes required for booting Linux on FVP in GICv3 mode
------------------------------------------------------------
In case the TF FVP port is built with the build option
`FVP_USE_GIC_DRIVER=FVP_GICV3`, then the GICv3 hardware cannot be used in
GICv2 legacy mode. The default build of UEFI for FVP in
[latest tracking kernel][Linaro Release Notes] configures GICv3 in GICv2 legacy
mode. This can be changed by setting the build flag
`gArmTokenSpaceGuid.PcdArmGicV3WithV2Legacy` to FALSE in
`uefi/edk2/ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc`.
Recompile UEFI as mentioned [here][FVP Instructions].
The GICv3 DTBs found in ARM Trusted Firmware source directory can be
used to test the GICv3 kernel on the respective FVP models.
2013-10-25 09:08:21 +01:00
- - - - - - - - - - - - - - - - - - - - - - - - - -
_Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved._
2013-10-25 09:08:21 +01:00
[Firmware Design]: firmware-design.md
[ARM FVP website]: http://www.arm.com/fvp
[Linaro Release Notes]: https://community.arm.com/docs/DOC-10952#jive_content_id_Linaro_Release_1510
[ARM Platforms Portal]: https://community.arm.com/groups/arm-development-platforms
[Linaro SW Instructions]: https://community.arm.com/docs/DOC-10803
[Juno Instructions]: https://community.arm.com/docs/DOC-10804
[FVP Instructions]: https://community.arm.com/docs/DOC-10831
[Juno Getting Started Guide]: http://infocenter.arm.com/help/topic/com.arm.doc.dui0928e/DUI0928E_juno_arm_development_platform_gsg.pdf
[DS-5]: http://www.arm.com/products/tools/software-tools/ds-5/index.php
[mbed TLS Repository]: https://github.com/ARMmbed/mbedtls.git
[mbed TLS Security Center]: https://tls.mbed.org/security
[PSCI]: http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf "Power State Coordination Interface PDD (ARM DEN 0022C)"
[Trusted Board Boot]: trusted-board-boot.md
[Firmware Update]: ./firmware-update.md