Commit Graph

429 Commits

Author SHA1 Message Date
Brendan Jackman 0f829ea9fe Add A72 support for Juno R2
Cortex-A72 library support is now compiled into the Juno platform port to go
with the existing A53/A57 support. This enables a single set of Juno TF
binaries to run on Juno R0, R1 and R2 boards.

Change-Id: I4a601dc4f671e98bdb19d98bbb66f02f0d8b7fc7
2015-11-04 16:23:42 +00:00
Juan Castillo e098e244a2 Remove deprecated IO return definitions
Patch 7e26fe1f deprecates IO specific return definitions in favour
of standard errno codes. This patch removes those definitions
and its usage from the IO framework, IO drivers and IO platform
layer. Following this patch, standard errno codes must be used
when checking the return value of an IO function.

Change-Id: Id6e0e9d0a7daf15a81ec598cf74de83d5768650f
2015-11-02 10:47:01 +00:00
Soby Mathew c1bb8a0500 Support PSCI SYSTEM SUSPEND on Juno
This patch adds the capability to power down at system power domain level
on Juno via the PSCI SYSTEM SUSPEND API. The CSS power management helpers
are modified to add support for power management operations at system
power domain level. A new helper for populating `get_sys_suspend_power_state`
handler in plat_psci_ops is defined. On entering the system suspend state,
the SCP powers down the SYSTOP power domain on the SoC and puts the memory
into retention mode. On wakeup from the power down, the system components
on the CSS will be reinitialized by the platform layer and the PSCI client
is responsible for restoring the context of these system components.

According to PSCI Specification, interrupts targeted to cores in PSCI CPU
SUSPEND should be able to resume it. On Juno, when the system power domain
is suspended, the GIC is also powered down. The SCP resumes the final core
to be suspend when an external wake-up event is received. But the other
cores cannot be woken up by a targeted interrupt, because GIC doesn't
forward these interrupts to the SCP. Due to this hardware limitation,
we down-grade PSCI CPU SUSPEND requests targeted to the system power domain
level to cluster power domain level in `juno_validate_power_state()`
and the CSS default `plat_arm_psci_ops` is overridden in juno_pm.c.

A system power domain resume helper `arm_system_pwr_domain_resume()` is
defined for ARM standard platforms which resumes/re-initializes the
system components on wakeup from system suspend. The security setup also
needs to be done on resume from system suspend, which means
`plat_arm_security_setup()` must now be included in the BL3-1 image in
addition to previous BL images if system suspend need to be supported.

Change-Id: Ie293f75f09bad24223af47ab6c6e1268f77bcc47
2015-10-30 09:07:17 +00:00
Soby Mathew 5f3a60301e CSS: Implement topology support for System power domain
This patch implements the necessary topology changes for supporting
system power domain on CSS platforms. The definition of PLAT_MAX_PWR_LVL and
PLAT_NUM_PWR_DOMAINS macros are removed from arm_def.h and are made platform
specific. In addition, the `arm_power_domain_tree_desc[]` and
`arm_pm_idle_states[]` are modified to support the system power domain
at level 2. With this patch, even though the power management operations
involving the system power domain will not return any error, the platform
layer will silently ignore any operations to the power domain. The actual
power management support for the system power domain will be added later.

Change-Id: I791867eded5156754fe898f9cdc6bba361e5a379
2015-10-30 09:07:17 +00:00
David Wang 371d4399d1 Allow CSS to redefine function `plat_arm_calc_core_pos`
Currently all ARM CSS platforms which include css_helpers.S use the same
strong definition of `plat_arm_calc_core_pos`. This patch allows these CSS
platforms to define their own strong definition of this function.

* Replace the strong definition of `plat_arm_calc_core_pos` in
  css_helpers.S with a utility function `css_calc_core_pos_swap_cluster`
  does the same thing (swaps cluster IDs). ARM CSS platforms may choose
  to use this function or not.

* Add a Juno strong definition of `plat_arm_calc_core_pos`, which uses
  `css_calc_core_pos_swap_cluster`.

Change-Id: Ib5385ed10e44adf6cd1398a93c25973eb3506d9d
2015-10-27 10:11:55 +08:00
Soby Mathew 785fb92b8a Reorganise PSCI PM handler setup on ARM Standard platforms
This patch does the following reorganization to psci power management (PM)
handler setup for ARM standard platform ports :

1. The mailbox programming required during `plat_setup_psci_ops()` is identical
   for all ARM platforms. Hence the implementation of this API is now moved
   to the common `arm_pm.c` file. Each ARM platform now must define the
   PLAT_ARM_TRUSTED_MAILBOX_BASE macro, which in current platforms is the same
   as ARM_SHARED_RAM_BASE.

2. The PSCI PM handler callback structure, `plat_psci_ops`, must now be
   exported via `plat_arm_psci_pm_ops`. This allows the common implementation
   of `plat_setup_psci_ops()` to return a platform specific `plat_psci_ops`.
   In the case of CSS platforms, a default weak implementation of the same is
   provided in `css_pm.c` which can be overridden by each CSS platform.

3. For CSS platforms, the PSCI PM handlers defined in `css_pm.c` are now
   made library functions and a new header file `css_pm.h` is added to export
   these generic PM handlers. This allows the platform to reuse the
   adequate CSS PM handlers and redefine others which need to be customized
   when overriding the default `plat_arm_psci_pm_ops` in `css_pm.c`.

Change-Id: I277910f609e023ee5d5ff0129a80ecfce4356ede
2015-10-20 14:11:04 +01:00
Vikram Kanigiri 883852ca0a Separate CSS security setup from SOC security setup
Currently, on ARM platforms(ex. Juno) non-secure access to specific
peripheral regions, config registers which are inside and outside CSS
is done in the soc_css_security_setup(). This patch separates the CSS
security setup from the SOC security setup in the css_security_setup().

The CSS security setup involves programming of the internal NIC to
provide access to regions inside the CSS. This is needed only in
Juno, hence Juno implements it in its board files as css_init_nic400().

Change-Id: I95a1fb9f13f9b18fa8e915eb4ae2f15264f1b060
2015-09-11 11:50:26 +01:00
Vikram Kanigiri 4b1439c5ae Define the Non-Secure timer frame ID for ARM platforms
On Juno and FVP platforms, the Non-Secure System timer corresponds
to frame 1. However, this is a platform-specific decision and it
shouldn't be hard-coded. Hence, this patch introduces
PLAT_ARM_NSTIMER_FRAME_ID which should be used by all ARM platforms
to specify the correct non-secure timer frame.

Change-Id: I6c3a905d7d89200a2f58c20ce5d1e1d166832bba
2015-09-11 11:39:22 +01:00
Vikram Kanigiri e86c1ff0c9 Re-factor definition of TZC-400 base address
This patch replaces the `ARM_TZC_BASE` constant with `PLAT_ARM_TZC_BASE` to
support different TrustZone Controller base addresses across ARM platforms.

Change-Id: Ie4e1c7600fd7a5875323c7cc35e067de0c6ef6dd
2015-09-11 11:37:38 +01:00
Vikram Kanigiri a7270d35d7 Configure all secure interrupts on ARM platforms
ARM TF configures all interrupts as non-secure except those which
are present in irq_sec_array. This patch updates the irq_sec_array
with the missing secure interrupts for ARM platforms.

It also updates the documentation to be inline with the latest
implementation.

Fixes ARM-software/tf-issues#312

Change-Id: I39956c56a319086e3929d1fa89030b4ec4b01fcc
2015-09-01 14:11:09 +01:00
Soby Mathew 58523c076a PSCI: Add documentation and fix plat_is_my_cpu_primary()
This patch adds the necessary documentation updates to porting_guide.md
for the changes in the platform interface mandated as a result of the new
PSCI Topology and power state management frameworks. It also adds a
new document `platform-migration-guide.md` to aid the migration of existing
platform ports to the new API.

The patch fixes the implementation and callers of
plat_is_my_cpu_primary() to use w0 as the return parameter as implied by
the function signature rather than x0 which was used previously.

Change-Id: Ic11e73019188c8ba2bd64c47e1729ff5acdcdd5b
2015-08-13 23:48:07 +01:00
Soby Mathew f9e858b1f7 PSCI: Validate non secure entrypoint on ARM platforms
This patch implements the platform power managment handler to verify
non secure entrypoint for ARM platforms. The handler ensures that the
entry point specified by the normal world during CPU_SUSPEND, CPU_ON
or SYSTEM_SUSPEND PSCI API is a valid address within the non secure
DRAM.

Change-Id: I4795452df99f67a24682b22f0e0967175c1de429
2015-08-13 23:48:07 +01:00
Sandrine Bailleux a6bd5ffbb0 PSCI: Pool platform_mem_init() in common ARM platforms code
Now that the FVP mailbox is no longer zeroed, the function
platform_mem_init() does nothing both on FVP and on Juno. Therefore,
this patch pools it as the default implementation on ARM platforms.

Change-Id: I007220f4531f15e8b602c3368a1129a5e3a38d91
2015-08-13 23:48:07 +01:00
Sandrine Bailleux 804040d106 PSCI: Use a single mailbox for warm reset for FVP and Juno
Since there is a unique warm reset entry point, the FVP and Juno
port can use a single mailbox instead of maintaining one per core.
The mailbox gets programmed only once when plat_setup_psci_ops()
is invoked during PSCI initialization. This means mailbox is not
zeroed out during wakeup.

Change-Id: Ieba032a90b43650f970f197340ebb0ce5548d432
2015-08-13 23:48:06 +01:00
Soby Mathew 2204afded5 PSCI: Demonstrate support for composite power states
This patch adds support to the Juno and FVP ports for composite power states
with both the original and extended state-id power-state formats. Both the
platform ports use the recommended state-id encoding as specified in
Section 6.5 of the PSCI specification (ARM DEN 0022C). The platform build flag
ARM_RECOM_STATE_ID_ENC is used to include this support.

By default, to maintain backwards compatibility, the original power state
parameter format is used and the state-id field is expected to be zero.

Change-Id: Ie721b961957eaecaca5bf417a30952fe0627ef10
2015-08-13 23:48:06 +01:00
Soby Mathew 38dce70f51 PSCI: Migrate ARM reference platforms to new platform API
This patch migrates ARM reference platforms, Juno and FVP, to the new platform
API mandated by the new PSCI power domain topology and composite power state
frameworks. The platform specific makefiles now exports the build flag
ENABLE_PLAT_COMPAT=0 to disable the platform compatibility layer.

Change-Id: I3040ed7cce446fc66facaee9c67cb54a8cd7ca29
2015-08-13 23:48:06 +01:00
Juan Castillo f04585f399 TBB: delete deprecated plat_match_rotpk()
The authentication framework deprecates plat_match_rotpk()
in favour of plat_get_rotpk_info(). This patch removes
plat_match_rotpk() from the platform port.

Change-Id: I2250463923d3ef15496f9c39678b01ee4b33883b
2015-06-25 08:53:27 +01:00
Juan Castillo 1779ba6b97 TBB: switch to the new authentication framework
This patch modifies the Trusted Board Boot implementation to use
the new authentication framework, making use of the authentication
module, the cryto module and the image parser module to
authenticate the images in the Chain of Trust.

A new function 'load_auth_image()' has been implemented. When TBB
is enabled, this function will call the authentication module to
authenticate parent images following the CoT up to the root of
trust to finally load and authenticate the requested image.

The platform is responsible for picking up the right makefiles to
build the corresponding cryptographic and image parser libraries.
ARM platforms use the mbedTLS based libraries.

The platform may also specify what key algorithm should be used
to sign the certificates. This is done by declaring the 'KEY_ALG'
variable in the platform makefile. FVP and Juno use ECDSA keys.

On ARM platforms, BL2 and BL1-RW regions have been increased 4KB
each to accommodate the ECDSA code.

REMOVED BUILD OPTIONS:

  * 'AUTH_MOD'

Change-Id: I47d436589fc213a39edf5f5297bbd955f15ae867
2015-06-25 08:53:27 +01:00
Juan Castillo 95cfd4ad84 TBB: add platform API to read the ROTPK information
This patch extends the platform port by adding an API that returns
either the Root of Trust public key (ROTPK) or its hash. This is
usually stored in ROM or eFUSE memory. The ROTPK returned must be
encoded in DER format according to the following ASN.1 structure:

    SubjectPublicKeyInfo  ::=  SEQUENCE  {
        algorithm           AlgorithmIdentifier,
        subjectPublicKey    BIT STRING
    }

In case the platform returns a hash of the key:

    DigestInfo  ::= SEQUENCE {
        digestAlgorithm     AlgorithmIdentifier,
        keyDigest           OCTET STRING
    }

An implementation for ARM development platforms is provided in this
patch. When TBB is enabled, the ROTPK hash location must be specified
using the build option 'ARM_ROTPK_LOCATION'. Available options are:

    - 'regs' : return the ROTPK hash stored in the Trusted
      root-key storage registers.

    - 'devel_rsa' : return a ROTPK hash embedded in the BL1 and
      BL2 binaries. This hash has been obtained from the development
      RSA public key located in 'plat/arm/board/common/rotpk'.

On FVP, the number of MMU tables has been increased to map and
access the ROTPK registers.

A new file 'board_common.mk' has been added to improve code sharing
in the ARM develelopment platforms.

Change-Id: Ib25862e5507d1438da10773e62bd338da8f360bf
2015-06-25 08:53:26 +01:00
Juan Castillo 16948ae1d9 Use numbers to identify images instead of names
The Trusted firmware code identifies BL images by name. The platform
port defines a name for each image e.g. the IO framework uses this
mechanism in the platform function plat_get_image_source(). For
a given image name, it returns the handle to the image file which
involves comparing images names. In addition, if the image is
packaged in a FIP, a name comparison is required to find the UUID
for the image. This method is not optimal.

This patch changes the interface between the generic and platform
code with regard to identifying images. The platform port must now
allocate a unique number (ID) for every image. The generic code will
use the image ID instead of the name to access its attributes.

As a result, the plat_get_image_source() function now takes an image
ID as an input parameter. The organisation of data structures within
the IO framework has been rationalised to use an image ID as an index
into an array which contains attributes of the image such as UUID and
name. This prevents the name comparisons.

A new type 'io_uuid_spec_t' has been introduced in the IO framework
to specify images identified by UUID (i.e. when the image is contained
in a FIP file). There is no longer need to maintain a look-up table
[iname_name --> uuid] in the io_fip driver code.

Because image names are no longer mandatory in the platform port, the
debug messages in the generic code will show the image identifier
instead of the file name. The platforms that support semihosting to
load images (i.e. FVP) must provide the file names as definitions
private to the platform.

The ARM platform ports and documentation have been updated accordingly.
All ARM platforms reuse the image IDs defined in the platform common
code. These IDs will be used to access other attributes of an image in
subsequent patches.

IMPORTANT: applying this patch breaks compatibility for platforms that
use TF BL1 or BL2 images or the image loading code. The platform port
must be updated to match the new interface.

Change-Id: I9c1b04cb1a0684c6ee65dee66146dd6731751ea5
2015-06-25 08:53:26 +01:00
danh-arm e347e843a9 Merge pull request #310 from sandrine-bailleux/sb/tf-issue-304-phase1
Enhance BL3-1 entrypoint handling to support non-TF boot firmware - Phase 1
2015-06-24 11:23:33 +01:00
Ryan Harkin b49b322190 FVP: Add SP804 delay timer
Add SP804 delay timer support to the FVP BSP.

This commit simply provides the 3 constants needed by the SP804
delay timer driver and calls sp804_timer_init() in
bl2_platform_setup(). The BSP does not currently use the delay
timer functions.

Note that the FVP SP804 is a normal world accessible peripheral
and should not be used by the secure world after transition
to the normal world.

Change-Id: I5f91d2ac9eb336fd81943b3bb388860dfb5f2b39
Co-authored-by: Dan Handley <dan.handley@arm.com>
2015-06-18 16:06:32 +01:00
Sandrine Bailleux 452b7fa25e Remove FIRST_RESET_HANDLER_CALL build option
This patch removes the FIRST_RESET_HANDLER_CALL build flag and its
use in ARM development platforms. If a different reset handling
behavior is required between the first and subsequent invocations
of the reset handling code, this should be detected at runtime.

On Juno, the platform reset handler is now always compiled in.
This means it is now executed twice on the cold boot path, first in
BL1 then in BL3-1, and it has the same behavior in both cases. It is
also executed twice on the warm boot path, first in BL1 then in the
PSCI entrypoint code.

Also update the documentation to reflect this change.

NOTE: THIS PATCH MAY FORCE PLATFORM PORTS THAT USE THE
FIRST_RESET_HANDLER_CALL BUILD OPTION TO FIX THEIR RESET HANDLER.

Change-Id: Ie5c17dbbd0932f5fa3b446efc6e590798a5beae2
2015-06-04 10:44:26 +01:00
Soby Mathew c8f0c3f76c FVP: Correct the PSYSR_WK bit width in platform_get_entrypoint
This patch fixes the incorrect bit width used to extract the wakeup
reason from PSYSR in platform_get_entrypoint() function. This defect
did not have any observed regression.

Change-Id: I42652dbffc99f5bf50cc86a5878f28d730720d9a
2015-06-03 14:43:14 +01:00
Sandrine Bailleux a669527505 Always enable CCI coherency in BL3-1
On ARM standard platforms, snoop and DVM requests used to be enabled
for the primary CPU's cluster only in the first EL3 bootloader.
In other words, if the platform reset into BL1 then CCI coherency
would be enabled by BL1 only, and not by BL3-1 again.

However, this doesn't cater for platforms that use BL3-1 along with
a non-TF ROM bootloader that doesn't enable snoop and DVM requests.
In this case, CCI coherency is never enabled.

This patch modifies the function bl31_early_platform_setup() on
ARM standard platforms so that it always enables snoop and DVM
requests regardless of whether earlier bootloader stages have
already done it. There is no harm in executing this code twice.

ARM Trusted Firmware Design document updated accordingly.

Change-Id: Idf1bdeb24d2e1947adfbb76a509f10beef224e1c
2015-06-01 10:03:32 +01:00
Dan Handley 12ad4d887b Fix return type of FVP plat_arm_topology_setup
Fix the return type of the FVP `plat_arm_topology_setup` function
to be `void` instead of `int` to match the declaration in
`plat_arm.h`.

This does not result in any change in behavior.

Change-Id: I62edfa7652b83bd26cffb7d167153959b38e37e7
2015-05-19 10:04:54 +01:00
Dan Handley 85135283f3 Move Juno port to plat/arm/board/juno
Move the Juno port from plat/juno to plat/arm/board/juno. Also rename
some of the files so they are consistently prefixed with juno_.
Update the platform makefiles accordingly.

Change-Id: I0af6cb52a5fee7ef209107a1188b76a3c33a2a9f
2015-04-28 19:50:56 +01:00
Dan Handley 3fc4124c75 Move FVP port to plat/arm/board/fvp
Move the FVP port from plat/fvp to plat/arm/board/fvp. Also rename
some of the files so they are consistently prefixed with fvp_.
Update the platform makefiles accordingly.

Change-Id: I7569affc3127d66405f1548fc81b878a858e61b7
2015-04-28 19:50:56 +01:00
Dan Handley b4315306ad Add common ARM and CSS platform code
This major change pulls out the common functionality from the
FVP and Juno platform ports into the following categories:

*   (include/)plat/common. Common platform porting functionality that
typically may be used by all platforms.

*   (include/)plat/arm/common. Common platform porting functionality
that may be used by all ARM standard platforms. This includes all
ARM development platforms like FVP and Juno but may also include
non-ARM-owned platforms.

*   (include/)plat/arm/board/common. Common platform porting
functionality for ARM development platforms at the board
(off SoC) level.

*   (include/)plat/arm/css/common. Common platform porting
functionality at the ARM Compute SubSystem (CSS) level. Juno
is an example of a CSS-based platform.

*   (include/)plat/arm/soc/common. Common platform porting
functionality at the ARM SoC level, which is not already defined
at the ARM CSS level.

No guarantees are made about the backward compatibility of
functionality provided in (include/)plat/arm.

Also remove any unnecessary variation between the ARM development
platform ports, including:

*   Unify the way BL2 passes `bl31_params_t` to BL3-1. Use the
Juno implementation, which copies the information from BL2 memory
instead of expecting it to persist in shared memory.

*   Unify the TZC configuration. There is no need to add a region
for SCP in Juno; it's enough to simply not allow any access to
this reserved region. Also set region 0 to provide no access by
default instead of assuming this is the case.

*   Unify the number of memory map regions required for ARM
development platforms, although the actual ranges mapped for each
platform may be different. For the FVP port, this reduces the
mapped peripheral address space.

These latter changes will only be observed when the platform ports
are migrated to use the new common platform code in subsequent
patches.

Change-Id: Id9c269dd3dc6e74533d0e5116fdd826d53946dc8
2015-04-28 19:50:56 +01:00