Commit Graph

297 Commits

Author SHA1 Message Date
danh-arm f62d89ed86 Merge pull request #531 from soby-mathew/sm/multicluster_fvp
Allow multi cluster topology definitions for ARM platforms
2016-02-19 18:21:34 +00:00
Soby Mathew 0108047ae4 Allow multi cluster topology definitions for ARM platforms
The common topology description helper funtions and macros for
ARM Standard platforms assumed a dual cluster system. This is not
flexible enough to scale to multi cluster platforms. This patch does
the following changes for more flexibility in defining topology:

1. The `plat_get_power_domain_tree_desc()` definition is moved from
   `arm_topology.c` to platform specific files, that is `fvp_topology.c`
   and `juno_topology.c`. Similarly the common definition of the porting
   macro `PLATFORM_CORE_COUNT` in `arm_def.h` is moved to platform
   specific `platform_def.h` header.

2. The ARM common layer porting macros which were dual cluster specific
   are now removed and a new macro PLAT_ARM_CLUSTER_COUNT is introduced
   which must be defined by each ARM standard platform.

3. A new mandatory ARM common layer porting API
   `plat_arm_get_cluster_core_count()` is introduced to enable the common
   implementation of `arm_check_mpidr()` to validate MPIDR.

4. For the FVP platforms, a new build option `FVP_NUM_CLUSTERS` has been
   introduced which allows the user to specify the cluster count to be
   used to build the topology tree within Trusted Firmare. This enables
   Trusted Firmware to be built for multi cluster FVP models.

Change-Id: Ie7a2e38e5661fe2fdb2c8fdf5641d2b2614c2b6b
2016-02-19 09:18:52 +00:00
danh-arm 85df7e44ce Merge pull request #523 from jcastillo-arm/jc/genfw-791
ARM platforms: rationalise memory attributes of shared memory
2016-02-18 18:36:00 +00:00
Juan Castillo 74eb26e409 ARM platforms: rationalise memory attributes of shared memory
The shared memory region on ARM platforms contains the mailboxes and,
on Juno, the payload area for communication with the SCP. This shared
memory may be configured as normal memory or device memory at build
time by setting the platform flag 'PLAT_ARM_SHARED_RAM_CACHED' (on
Juno, the value of this flag is defined by 'MHU_PAYLOAD_CACHED').
When set as normal memory, the platform port performs the corresponding
cache maintenance operations. From a functional point of view, this is
the equivalent of setting the shared memory as device memory, so there
is no need to maintain both options.

This patch removes the option to specify the shared memory as normal
memory on ARM platforms. Shared memory is always treated as device
memory. Cache maintenance operations are no longer needed and have
been replaced by data memory barriers to guarantee that payload and
MHU are accessed in the right order.

Change-Id: I7f958621d6a536dd4f0fa8768385eedc4295e79f
2016-02-18 09:31:15 +00:00
Vikram Kanigiri 6355f2347a Rework use of interconnect drivers
ARM Trusted Firmware supports 2 different interconnect peripheral
drivers: CCI and CCN. ARM platforms are implemented using either of the
interconnect peripherals.

This patch adds a layer of abstraction to help ARM platform ports to
choose the right interconnect driver and corresponding platform support.
This is as described below:

1. A set of ARM common functions have been implemented to initialise an
interconnect and for entering/exiting a cluster from coherency. These
functions are prefixed as "plat_arm_interconnect_". Weak definitions of
these functions have been provided for each type of driver.

2.`plat_print_interconnect_regs` macro used for printing CCI registers is
moved from a common arm_macros.S to cci_macros.S.

3. The `ARM_CONFIG_HAS_CCI` flag used in `arm_config_flags` structure
is renamed to `ARM_CONFIG_HAS_INTERCONNECT`.

Change-Id: I02f31184fbf79b784175892d5ce1161b65a0066c
2016-02-16 20:09:49 +00:00
danh-arm 3aef80f5b2 Merge pull request #521 from vikramkanigiri/vk/rearchitect_security
Perform security setup separately for each ARM platform
2016-02-16 12:47:05 +00:00
Vikram Kanigiri a9cc84d7f7 Perform security setup separately for each ARM platform
Prior to this patch, it was assumed that on all ARM platforms the bare
minimal security setup required is to program TrustZone protection. This
would always be done by programming the TZC-400 which was assumed to be
present in all ARM platforms. The weak definition of
platform_arm_security_setup() in plat/arm/common/arm_security.c
reflected these assumptions.

In reality, each ARM platform either decides at runtime whether
TrustZone protection needs to be programmed (e.g. FVPs) or performs
some security setup in addition to programming TrustZone protection
(e.g. NIC setup on Juno). As a result, the weak definition of
plat_arm_security_setup() is always overridden.

When a platform needs to program TrustZone protection and implements the
TZC-400 peripheral, it uses the arm_tzc_setup() function to do so. It is
also possible to program TrustZone protection through other peripherals
that include a TrustZone controller e.g. DMC-500. The programmer's
interface is slightly different across these various peripherals.

In order to satisfy the above requirements, this patch makes the
following changes to the way security setup is done on ARM platforms.

1. arm_security.c retains the definition of arm_tzc_setup() and has been
   renamed to arm_tzc400.c. This is to reflect the reliance on the
   TZC-400 peripheral to perform TrustZone programming. The new file is
   not automatically included in all platform ports through
   arm_common.mk. Each platform must include it explicitly in a platform
   specific makefile if needed.

   This approach enables introduction of similar library code to program
   TrustZone protection using a different peripheral. This code would be
   used by the subset of ARM platforms that implement this peripheral.

2. Due to #1 above, existing platforms which implements the TZC-400 have been
   updated to include the necessary files for both BL2, BL2U and BL31
   images.

Change-Id: I513c58f7a19fff2e9e9c3b95721592095bcb2735
2016-02-15 11:20:54 +00:00
Vikram Kanigiri 65cb1c4c28 Add API to return memory map on ARM platforms
Functions to configure the MMU in S-EL1 and EL3 on ARM platforms
expect each platform to export its memory map in the `plat_arm_mmap`
data structure. This approach does not scale well in case the memory
map cannot be determined until runtime. To cater for this possibility,
this patch introduces the plat_arm_get_mmap() API. It returns a
reference to the `plat_arm_mmap` by default but can be overridden
by a platform if required.

Change-Id: Idae6ad8fdf40cdddcd8b992abc188455fa047c74
2016-02-15 10:20:16 +00:00
danh-arm 51b57481c1 Merge pull request #501 from jcastillo-arm/jc/tf-issues/300
Disable PL011 UART before configuring it
2016-02-01 19:03:41 +00:00
danh-arm 01fc3f7300 Merge pull request #495 from jcastillo-arm/jc/tf-issues/170
ARM plat: add build option to unlock access to non-secure timer
2016-01-25 11:02:13 +00:00
Juan Castillo 9400b40ea4 Disable PL011 UART before configuring it
The PL011 TRM (ARM DDI 0183G) specifies that the UART must be
disabled before any of the control registers are programmed. The
PL011 driver included in TF does not disable the UART, so the
initialization in BL2 and BL31 is violating this requirement
(and potentially in BL1 if the UART is enabled after reset).

This patch modifies the initialization function in the PL011
console driver to disable the UART before programming the
control registers.

Register clobber list and documentation updated.

Fixes ARM-software/tf-issues#300

Change-Id: I839b2d681d48b03f821ac53663a6a78e8b30a1a1
2016-01-21 17:27:47 +00:00
Juan Castillo 0e5dcdd254 ARM plat: add build option to unlock access to non-secure timer
Currently, Trusted Firmware on ARM platforms unlocks access to the
timer frame registers that will be used by the Non-Secure world. This
unlock operation should be done by the Non-Secure software itself,
instead of relying on secure firmware settings.

This patch adds a new ARM specific build option 'ARM_CONFIG_CNTACR'
to unlock access to the timer frame by setting the corresponding
bits in the CNTACR<N> register. The frame id <N> is defined by
'PLAT_ARM_NSTIMER_FRAME_ID'. Default value is true (unlock timer
access).

Documentation updated accordingly.

Fixes ARM-software/tf-issues#170

Change-Id: Id9d606efd781e43bc581868cd2e5f9c8905bdbf6
2016-01-20 09:49:45 +00:00
Soren Brinkmann 65cd299f52 Remove direct usage of __attribute__((foo))
Migrate all direct usage of __attribute__ to usage of their
corresponding macros from cdefs.h.
e.g.:
 - __attribute__((unused)) -> __unused

Signed-off-by: Soren Brinkmann <soren.brinkmann@xilinx.com>
2016-01-14 10:55:17 -08:00
Juan Castillo 8f0617ef9e Apply TBBR naming convention to the fip_create options
The fip_create tool specifies images in the command line using the
ARM TF naming convention (--bl2, --bl31, etc), while the cert_create
tool uses the TBBR convention (--tb-fw, --soc-fw, etc). This double
convention is confusing and should be aligned.

This patch updates the fip_create command line options to follow the
TBBR naming convention. Usage examples in the User Guide have been
also updated.

NOTE: users that build the FIP by calling the fip_create tool directly
from the command line must update the command line options in their
scripts. Users that build the FIP by invoking the main ARM TF Makefile
should not notice any difference.

Change-Id: I84d602630a2585e558d927b50dfde4dd2112496f
2016-01-05 11:55:36 +00:00
Juan Castillo d178637d2b Remove dashes from image names: 'BL3-x' --> 'BL3x'
This patch removes the dash character from the image name, to
follow the image terminology in the Trusted Firmware Wiki page:

    https://github.com/ARM-software/arm-trusted-firmware/wiki

Changes apply to output messages, comments and documentation.

non-ARM platform files have been left unmodified.

Change-Id: Ic2a99be4ed929d52afbeb27ac765ceffce46ed76
2015-12-14 12:31:37 +00:00
Juan Castillo f59821d512 Replace all SCP FW (BL0, BL3-0) references
This patch replaces all references to the SCP Firmware (BL0, BL30,
BL3-0, bl30) with the image terminology detailed in the TF wiki
(https://github.com/ARM-software/arm-trusted-firmware/wiki):

    BL0          -->  SCP_BL1
    BL30, BL3-0  -->  SCP_BL2
    bl30         -->  scp_bl2

This change affects code, documentation, build system, tools and
platform ports that load SCP firmware. ARM plaforms have been
updated to the new porting API.

IMPORTANT: build option to specify the SCP FW image has changed:

    BL30 --> SCP_BL2

IMPORTANT: This patch breaks compatibility for platforms that use BL2
to load SCP firmware. Affected platforms must be updated as follows:

    BL30_IMAGE_ID --> SCP_BL2_IMAGE_ID
    BL30_BASE --> SCP_BL2_BASE
    bl2_plat_get_bl30_meminfo() --> bl2_plat_get_scp_bl2_meminfo()
    bl2_plat_handle_bl30() --> bl2_plat_handle_scp_bl2()

Change-Id: I24c4c1a4f0e4b9f17c9e4929da815c4069549e58
2015-12-14 12:31:16 +00:00
Juan Castillo 516beb585c TBB: apply TBBR naming convention to certificates and extensions
This patch applies the TBBR naming convention to the certificates
and the corresponding extensions defined by the CoT:

    * Certificate UUID names
    * Certificate identifier names
    * OID names

Changes apply to:

    * Generic code (variables and defines)
    * The default certificate identifiers provided in the generic
      code
    * Build system
    * ARM platforms port
    * cert_create tool internal definitions
    * fip_create and cert_create tools command line options
    * Documentation

IMPORTANT: this change breaks the compatibility with platforms
that use TBBR. The platform will need to adapt the identifiers
and OIDs to the TBBR naming convention introduced by this patch:

Certificate UUIDs:

    UUID_TRUSTED_BOOT_FIRMWARE_BL2_CERT --> UUID_TRUSTED_BOOT_FW_CERT
    UUID_SCP_FIRMWARE_BL30_KEY_CERT --> UUID_SCP_FW_KEY_CERT
    UUID_SCP_FIRMWARE_BL30_CERT --> UUID_SCP_FW_CONTENT_CERT
    UUID_EL3_RUNTIME_FIRMWARE_BL31_KEY_CERT --> UUID_SOC_FW_KEY_CERT
    UUID_EL3_RUNTIME_FIRMWARE_BL31_CERT --> UUID_SOC_FW_CONTENT_CERT
    UUID_SECURE_PAYLOAD_BL32_KEY_CERT --> UUID_TRUSTED_OS_FW_KEY_CERT
    UUID_SECURE_PAYLOAD_BL32_CERT --> UUID_TRUSTED_OS_FW_CONTENT_CERT
    UUID_NON_TRUSTED_FIRMWARE_BL33_KEY_CERT --> UUID_NON_TRUSTED_FW_KEY_CERT
    UUID_NON_TRUSTED_FIRMWARE_BL33_CERT --> UUID_NON_TRUSTED_FW_CONTENT_CERT

Certificate identifiers:

    BL2_CERT_ID --> TRUSTED_BOOT_FW_CERT_ID
    BL30_KEY_CERT_ID --> SCP_FW_KEY_CERT_ID
    BL30_CERT_ID --> SCP_FW_CONTENT_CERT_ID
    BL31_KEY_CERT_ID --> SOC_FW_KEY_CERT_ID
    BL31_CERT_ID --> SOC_FW_CONTENT_CERT_ID
    BL32_KEY_CERT_ID --> TRUSTED_OS_FW_KEY_CERT_ID
    BL32_CERT_ID --> TRUSTED_OS_FW_CONTENT_CERT_ID
    BL33_KEY_CERT_ID --> NON_TRUSTED_FW_KEY_CERT_ID
    BL33_CERT_ID --> NON_TRUSTED_FW_CONTENT_CERT_ID

OIDs:

    TZ_FW_NVCOUNTER_OID --> TRUSTED_FW_NVCOUNTER_OID
    NTZ_FW_NVCOUNTER_OID --> NON_TRUSTED_FW_NVCOUNTER_OID
    BL2_HASH_OID --> TRUSTED_BOOT_FW_HASH_OID
    TZ_WORLD_PK_OID --> TRUSTED_WORLD_PK_OID
    NTZ_WORLD_PK_OID --> NON_TRUSTED_WORLD_PK_OID
    BL30_CONTENT_CERT_PK_OID --> SCP_FW_CONTENT_CERT_PK_OID
    BL30_HASH_OID --> SCP_FW_HASH_OID
    BL31_CONTENT_CERT_PK_OID --> SOC_FW_CONTENT_CERT_PK_OID
    BL31_HASH_OID --> SOC_AP_FW_HASH_OID
    BL32_CONTENT_CERT_PK_OID --> TRUSTED_OS_FW_CONTENT_CERT_PK_OID
    BL32_HASH_OID --> TRUSTED_OS_FW_HASH_OID
    BL33_CONTENT_CERT_PK_OID --> NON_TRUSTED_FW_CONTENT_CERT_PK_OID
    BL33_HASH_OID --> NON_TRUSTED_WORLD_BOOTLOADER_HASH_OID
    BL2U_HASH_OID --> AP_FWU_CFG_HASH_OID
    SCP_BL2U_HASH_OID --> SCP_FWU_CFG_HASH_OID
    NS_BL2U_HASH_OID --> FWU_HASH_OID

Change-Id: I1e047ae046299ca913911c39ac3a6e123bd41079
2015-12-14 12:29:44 +00:00
danh-arm 7ee2b8b3f8 Merge pull request #462 from soby-mathew/sm/runtime_console
Enable BL31 to configure a runtime console
2015-12-09 19:03:06 +00:00
Yatharth Kochar 0191262d23 FWU: Add support for `fwu_fip` target
Firmware update feature needs a new FIP called `fwu_fip.bin` that
includes Secure(SCP_BL2U, BL2U) and Normal world(NS_BL2U) images
along with the FWU_CERT certificate in order for NS_BL1U to load
the images and help the Firmware update process to complete.

This patch adds the capability to support the new target `fwu_fip`
which includes above mentioned FWU images in the make files.

The new target of `fwu_fip` and its dependencies are included for
compilation only when `TRUSTED_BOARD_BOOT` is defined.

Change-Id: Ie780e3aac6cbd0edfaff3f9af96a2332bd69edbc
2015-12-09 17:41:19 +00:00
Yatharth Kochar dcda29f637 FWU: Add Firmware Update support in BL2U for ARM platforms
This patch adds support for Firmware update in BL2U for ARM
platforms such that TZC initialization is performed on all
ARM platforms and (optionally) transfer of SCP_BL2U image on
ARM CSS platforms.

BL2U specific functions are added to handle early_platform and
plat_arch setup. The MMU is configured to map in the BL2U
code/data area and other required memory.

Change-Id: I57863295a608cc06e6cbf078b7ce34cbd9733e4f
2015-12-09 17:41:19 +00:00
Yatharth Kochar 436223def6 FWU: Add Firmware Update support in BL1 for ARM platforms
This patch adds Firmware Update support for ARM platforms.

New files arm_bl1_fwu.c and juno_bl1_setup.c were added to provide
platform specific Firmware update code.

BL1 now includes mmap entry for `ARM_MAP_NS_DRAM1` to map DRAM for
authenticating NS_BL2U image(For both FVP and JUNO platform).

Change-Id: Ie116cd83f5dc00aa53d904c2f1beb23d58926555
2015-12-09 17:41:18 +00:00
Yatharth Kochar 7baff11fb5 Add descriptor based image management support in BL1
As of now BL1 loads and execute BL2 based on hard coded information
provided in BL1. But due to addition of support for upcoming Firmware
Update feature, BL1 now require more flexible approach to load and
run different images using information provided by the platform.

This patch adds new mechanism to load and execute images based on
platform provided image id's. BL1 now queries the platform to fetch
the image id of the next image to be loaded and executed. In order
to achieve this, a new struct image_desc_t was added which holds the
information about images, such as: ep_info and image_info.

This patch introduces following platform porting functions:

unsigned int bl1_plat_get_next_image_id(void);
	This is used to identify the next image to be loaded
	and executed by BL1.

struct image_desc *bl1_plat_get_image_desc(unsigned int image_id);
	This is used to retrieve the image_desc for given image_id.

void bl1_plat_set_ep_info(unsigned int image_id,
struct entry_point_info *ep_info);
	This function allows platforms to update ep_info for given
	image_id.

The plat_bl1_common.c file provides default weak implementations of
all above functions, the `bl1_plat_get_image_desc()` always return
BL2 image descriptor, the `bl1_plat_get_next_image_id()` always return
BL2 image ID and `bl1_plat_set_ep_info()` is empty and just returns.
These functions gets compiled into all BL1 platforms by default.

Platform setup in BL1, using `bl1_platform_setup()`, is now done
_after_ the initialization of authentication module. This change
provides the opportunity to use authentication while doing the
platform setup in BL1.

In order to store secure/non-secure context, BL31 uses percpu_data[]
to store context pointer for each core. In case of BL1 only the
primary CPU will be active hence percpu_data[] is not required to
store the context pointer.

This patch introduce bl1_cpu_context[] and bl1_cpu_context_ptr[] to
store the context and context pointers respectively. It also also
re-defines cm_get_context() and cm_set_context() for BL1 in
bl1/bl1_context_mgmt.c.

BL1 now follows the BL31 pattern of using SP_EL0 for the C runtime
environment, to support resuming execution from a previously saved
context.

NOTE: THE `bl1_plat_set_bl2_ep_info()` PLATFORM PORTING FUNCTION IS
      NO LONGER CALLED BY BL1 COMMON CODE. PLATFORMS THAT OVERRIDE
      THIS FUNCTION MAY NEED TO IMPLEMENT `bl1_plat_set_ep_info()`
      INSTEAD TO MAINTAIN EXISTING BEHAVIOUR.

Change-Id: Ieee4c124b951c2e9bc1c1013fa2073221195d881
2015-12-09 17:41:18 +00:00
Soby Mathew 080225dacd Specify BL31 runtime console for ARM Standard platforms
This patch overrides the default weak definition of
`bl31_plat_runtime_setup()` for ARM Standard platforms to
specify a BL31 runtime console. ARM Standard platforms are
now expected to define `PLAT_ARM_BL31_RUN_UART_BASE` and
`PLAT_ARM_BL31_RUN_UART_CLK_IN_HZ` macros which is required
by `arm_bl31_plat_runtime_setup()` to initialize the runtime
console.

The system suspend resume helper `arm_system_pwr_domain_resume()`
is fixed to initialize the runtime console rather than the boot
console on resumption from system suspend.

Fixes ARM-software/tf-issues#220

Change-Id: I80eafe5b6adcfc7f1fdf8b99659aca1c64d96975
2015-12-09 17:29:55 +00:00
Achin Gupta 27573c59a6 Rework use of ARM GIC drivers on ARM platforms
Suport for ARM GIC v2.0 and v3.0 drivers has been reworked to create three
separate drivers instead of providing a single driver that can work on both
versions of the GIC architecture. These drivers correspond to the following
software use cases:

1. A GICv2 only driver that can run only on ARM GIC v2.0 implementations
   e.g. GIC-400

2. A GICv3 only driver that can run only on ARM GIC v3.0 implementations
   e.g. GIC-500 in a mode where all interrupt regimes use GICv3 features

3. A deprecated GICv3 driver that operates in legacy mode. This driver can
   operate only in the GICv2 mode in the secure world. On a GICv3 system, this
   driver allows normal world to run in either GICv3 mode (asymmetric mode)
   or in the GICv2 mode. Both modes of operation are deprecated on GICv3
   systems.

ARM platforms implement both versions of the GIC architecture. This patch adds a
layer of abstraction to help ARM platform ports chose the right GIC driver and
corresponding platform support. This is as described below:

1. A set of ARM common functions have been introduced to initialise the GIC and
   the driver during cold and warm boot. These functions are prefixed as
   "plat_arm_gic_". Weak definitions of these functions have been provided for
   each type of driver.

2. Each platform includes the sources that implement the right functions
   directly into the its makefile. The FVP can be instantiated with different
   versions of the GIC architecture. It uses the FVP_USE_GIC_DRIVER build option
   to specify which of the three drivers should be included in the build.

3. A list of secure interrupts has to be provided to initialise each of the
  three GIC drivers. For GIC v3.0 the interrupt ids have to be further
  categorised as Group 0 and Group 1 Secure interrupts. For GIC v2.0, the two
  types are merged and treated as Group 0 interrupts.

  The two lists of interrupts are exported from the platform_def.h. The lists
  are constructed by adding a list of board specific interrupt ids to a list of
  ids common to all ARM platforms and Compute sub-systems.

This patch also makes some fields of `arm_config` data structure in FVP redundant
and these unused fields are removed.

Change-Id: Ibc8c087be7a8a6b041b78c2c3bd0c648cd2035d8
2015-12-09 09:58:17 +00:00
danh-arm 38d8fddf4e Merge pull request #444 from jcastillo-arm/jc/tbb_wdog
Jc/tbb wdog
2015-12-02 16:42:06 +00:00
Juan Castillo 7b4c140514 TBB: add Trusted Watchdog support on ARM platforms
This patch adds watchdog support on ARM platforms (FVP and Juno).
A secure instance of SP805 is used as Trusted Watchdog. It is
entirely managed in BL1, being enabled in the early platform setup
hook and disabled in the exit hook. By default, the watchdog is
enabled in every build (even when TBB is disabled).

A new ARM platform specific build option `ARM_DISABLE_TRUSTED_WDOG`
has been introduced to allow the user to disable the watchdog at
build time. This feature may be used for testing or debugging
purposes.

Specific error handlers for Juno and FVP are also provided in this
patch. These handlers will be called after an image load or
authentication error. On FVP, the Table of Contents (ToC) in the FIP
is erased. On Juno, the corresponding error code is stored in the
V2M Non-Volatile flags register. In both cases, the CPU spins until
a watchdog reset is generated after 256 seconds (as specified in
the TBBR document).

Change-Id: I9ca11dcb0fe15af5dbc5407ab3cf05add962f4b4
2015-12-02 13:54:35 +00:00
danh-arm 712038db83 Merge pull request #443 from achingupta/sb/el3_payloads-cb_single_cpu
Add support to boot EL3 payloads and only a single CPU at cold reset
2015-12-01 19:02:24 +00:00
Sandrine Bailleux 4c117f6c49 CSS: Enable booting of EL3 payloads
This patch adds support for booting EL3 payloads on CSS platforms,
for example Juno. In this scenario, the Trusted Firmware follows
its normal boot flow up to the point where it would normally pass
control to the BL31 image. At this point, it jumps to the EL3
payload entry point address instead.

Before handing over to the EL3 payload, the data SCP writes for AP
at the beginning of the Trusted SRAM is restored, i.e. we zero the
first 128 bytes and restore the SCP Boot configuration. The latter
is saved before transferring the BL30 image to SCP and is restored
just after the transfer (in BL2). The goal is to make it appear that
the EL3 payload is the first piece of software to run on the target.

The BL31 entrypoint info structure is updated to make the primary
CPU jump to the EL3 payload instead of the BL31 image.

The mailbox is populated with the EL3 payload entrypoint address,
which releases the secondary CPUs out of their holding pen (if the
SCP has powered them on). The arm_program_trusted_mailbox() function
has been exported for this purpose.

The TZC-400 configuration in BL2 is simplified: it grants secure
access only to the whole DRAM. Other security initialization is
unchanged.

This alternative boot flow is disabled by default. A new build option
EL3_PAYLOAD_BASE has been introduced to enable it and provide the EL3
payload's entry point address. The build system has been modified
such that BL31 and BL33 are not compiled and/or not put in the FIP in
this case, as those images are not used in this boot flow.

Change-Id: Id2e26fa57988bbc32323a0effd022ab42f5b5077
2015-11-26 21:32:04 +00:00
Juan Castillo 5ea8aa722d Add NULL pointer check before reading BL32 entry point information
BL2 is responsible for loading BL32 and passing a pointer to the
BL32 entrypoint info to BL31 in the BL31 parameters. If no BL32
image is loaded, a NULL pointer is passed. The platform is
responsible for accessing BL31 parameters and extracting the
corresponding BL32 EP info.

In ARM platforms, arm_bl31_early_platform_setup() dereferences the
pointer to the BL32 EP info without checking first if the pointer
is NULL. This will cause an exception if a BL32 entrypoint has not
been populated by BL2. FVP and Juno are not affected because they
always define BL32_BASE, irrespective of whether a BL32 image is
included in the FIP or not.

This patches fixes the issue by checking the BL32 ep_info pointer
before trying to access the data.

If `RESET_TO_BL31` is enabled, the BL32 entrypoint is not
populated if BL32_BASE is not defined.

NOTE: Maintainers of partner platforms should check for this issue
in their ports.

Fixes ARM-software/tf-issues#320

Change-Id: I31456155503f2765766e8b7cd30ab4a40958fb96
2015-11-13 10:51:26 +00:00
Achin Gupta 135c9ddd36 Merge pull request #423 from jcastillo-arm/jc/genfw/1211
Remove deprecated IO return definitions
2015-11-04 22:32:50 +00:00
Juan Castillo e098e244a2 Remove deprecated IO return definitions
Patch 7e26fe1f deprecates IO specific return definitions in favour
of standard errno codes. This patch removes those definitions
and its usage from the IO framework, IO drivers and IO platform
layer. Following this patch, standard errno codes must be used
when checking the return value of an IO function.

Change-Id: Id6e0e9d0a7daf15a81ec598cf74de83d5768650f
2015-11-02 10:47:01 +00:00
Soby Mathew c1bb8a0500 Support PSCI SYSTEM SUSPEND on Juno
This patch adds the capability to power down at system power domain level
on Juno via the PSCI SYSTEM SUSPEND API. The CSS power management helpers
are modified to add support for power management operations at system
power domain level. A new helper for populating `get_sys_suspend_power_state`
handler in plat_psci_ops is defined. On entering the system suspend state,
the SCP powers down the SYSTOP power domain on the SoC and puts the memory
into retention mode. On wakeup from the power down, the system components
on the CSS will be reinitialized by the platform layer and the PSCI client
is responsible for restoring the context of these system components.

According to PSCI Specification, interrupts targeted to cores in PSCI CPU
SUSPEND should be able to resume it. On Juno, when the system power domain
is suspended, the GIC is also powered down. The SCP resumes the final core
to be suspend when an external wake-up event is received. But the other
cores cannot be woken up by a targeted interrupt, because GIC doesn't
forward these interrupts to the SCP. Due to this hardware limitation,
we down-grade PSCI CPU SUSPEND requests targeted to the system power domain
level to cluster power domain level in `juno_validate_power_state()`
and the CSS default `plat_arm_psci_ops` is overridden in juno_pm.c.

A system power domain resume helper `arm_system_pwr_domain_resume()` is
defined for ARM standard platforms which resumes/re-initializes the
system components on wakeup from system suspend. The security setup also
needs to be done on resume from system suspend, which means
`plat_arm_security_setup()` must now be included in the BL3-1 image in
addition to previous BL images if system suspend need to be supported.

Change-Id: Ie293f75f09bad24223af47ab6c6e1268f77bcc47
2015-10-30 09:07:17 +00:00
danh-arm 84ab33e1e9 Merge pull request #410 from soby-mathew/sm/psci_handler_reorg
Reorganise PSCI PM handler setup on ARM Standard platforms
2015-10-21 12:16:51 +01:00
Soby Mathew 785fb92b8a Reorganise PSCI PM handler setup on ARM Standard platforms
This patch does the following reorganization to psci power management (PM)
handler setup for ARM standard platform ports :

1. The mailbox programming required during `plat_setup_psci_ops()` is identical
   for all ARM platforms. Hence the implementation of this API is now moved
   to the common `arm_pm.c` file. Each ARM platform now must define the
   PLAT_ARM_TRUSTED_MAILBOX_BASE macro, which in current platforms is the same
   as ARM_SHARED_RAM_BASE.

2. The PSCI PM handler callback structure, `plat_psci_ops`, must now be
   exported via `plat_arm_psci_pm_ops`. This allows the common implementation
   of `plat_setup_psci_ops()` to return a platform specific `plat_psci_ops`.
   In the case of CSS platforms, a default weak implementation of the same is
   provided in `css_pm.c` which can be overridden by each CSS platform.

3. For CSS platforms, the PSCI PM handlers defined in `css_pm.c` are now
   made library functions and a new header file `css_pm.h` is added to export
   these generic PM handlers. This allows the platform to reuse the
   adequate CSS PM handlers and redefine others which need to be customized
   when overriding the default `plat_arm_psci_pm_ops` in `css_pm.c`.

Change-Id: I277910f609e023ee5d5ff0129a80ecfce4356ede
2015-10-20 14:11:04 +01:00
Sandrine Bailleux 3ae8a360e0 Fix #include path in ARM platform BL1 setup code
This patch fixes the relative path to the 'bl1_private.h' header file
included from 'arm_bl1_setup.c'. Note that, although the path was
incorrect, it wasn't causing a compilation error because the header
file still got included through an alternative include search path.

Change-Id: I28e4f3dbe50e3550ca6cad186502c88a9fb5e260
2015-10-19 08:46:54 +01:00
Achin Gupta fd6007de64 Add a generic driver for ARM CCN IP
This patch adds a device driver which can be used to program the following
aspects of ARM CCN IP:

1. Specify the mapping between ACE/ACELite/ACELite+DVM/CHI master interfaces and
   Request nodes.
2. Add and remove master interfaces from the snoop and dvm
   domains.
3. Place the L3 cache in a given power state.
4. Configuring system adress map and enabling 3 SN striping mode of memory
   controller operation.

Change-Id: I0f665c6a306938e5b66f6a92f8549b529aa8f325
2015-09-14 22:09:40 +01:00
Vikram Kanigiri 4b1439c5ae Define the Non-Secure timer frame ID for ARM platforms
On Juno and FVP platforms, the Non-Secure System timer corresponds
to frame 1. However, this is a platform-specific decision and it
shouldn't be hard-coded. Hence, this patch introduces
PLAT_ARM_NSTIMER_FRAME_ID which should be used by all ARM platforms
to specify the correct non-secure timer frame.

Change-Id: I6c3a905d7d89200a2f58c20ce5d1e1d166832bba
2015-09-11 11:39:22 +01:00
Vikram Kanigiri e86c1ff0c9 Re-factor definition of TZC-400 base address
This patch replaces the `ARM_TZC_BASE` constant with `PLAT_ARM_TZC_BASE` to
support different TrustZone Controller base addresses across ARM platforms.

Change-Id: Ie4e1c7600fd7a5875323c7cc35e067de0c6ef6dd
2015-09-11 11:37:38 +01:00
Soby Mathew f9e858b1f7 PSCI: Validate non secure entrypoint on ARM platforms
This patch implements the platform power managment handler to verify
non secure entrypoint for ARM platforms. The handler ensures that the
entry point specified by the normal world during CPU_SUSPEND, CPU_ON
or SYSTEM_SUSPEND PSCI API is a valid address within the non secure
DRAM.

Change-Id: I4795452df99f67a24682b22f0e0967175c1de429
2015-08-13 23:48:07 +01:00
Sandrine Bailleux a6bd5ffbb0 PSCI: Pool platform_mem_init() in common ARM platforms code
Now that the FVP mailbox is no longer zeroed, the function
platform_mem_init() does nothing both on FVP and on Juno. Therefore,
this patch pools it as the default implementation on ARM platforms.

Change-Id: I007220f4531f15e8b602c3368a1129a5e3a38d91
2015-08-13 23:48:07 +01:00
Soby Mathew 2204afded5 PSCI: Demonstrate support for composite power states
This patch adds support to the Juno and FVP ports for composite power states
with both the original and extended state-id power-state formats. Both the
platform ports use the recommended state-id encoding as specified in
Section 6.5 of the PSCI specification (ARM DEN 0022C). The platform build flag
ARM_RECOM_STATE_ID_ENC is used to include this support.

By default, to maintain backwards compatibility, the original power state
parameter format is used and the state-id field is expected to be zero.

Change-Id: Ie721b961957eaecaca5bf417a30952fe0627ef10
2015-08-13 23:48:06 +01:00
Soby Mathew 38dce70f51 PSCI: Migrate ARM reference platforms to new platform API
This patch migrates ARM reference platforms, Juno and FVP, to the new platform
API mandated by the new PSCI power domain topology and composite power state
frameworks. The platform specific makefiles now exports the build flag
ENABLE_PLAT_COMPAT=0 to disable the platform compatibility layer.

Change-Id: I3040ed7cce446fc66facaee9c67cb54a8cd7ca29
2015-08-13 23:48:06 +01:00
Juan Castillo 1779ba6b97 TBB: switch to the new authentication framework
This patch modifies the Trusted Board Boot implementation to use
the new authentication framework, making use of the authentication
module, the cryto module and the image parser module to
authenticate the images in the Chain of Trust.

A new function 'load_auth_image()' has been implemented. When TBB
is enabled, this function will call the authentication module to
authenticate parent images following the CoT up to the root of
trust to finally load and authenticate the requested image.

The platform is responsible for picking up the right makefiles to
build the corresponding cryptographic and image parser libraries.
ARM platforms use the mbedTLS based libraries.

The platform may also specify what key algorithm should be used
to sign the certificates. This is done by declaring the 'KEY_ALG'
variable in the platform makefile. FVP and Juno use ECDSA keys.

On ARM platforms, BL2 and BL1-RW regions have been increased 4KB
each to accommodate the ECDSA code.

REMOVED BUILD OPTIONS:

  * 'AUTH_MOD'

Change-Id: I47d436589fc213a39edf5f5297bbd955f15ae867
2015-06-25 08:53:27 +01:00
Juan Castillo dff93c8675 TBB: add TBBR Chain of Trust
This patch adds a CoT based on the Trusted Board Boot Requirements
document*. The CoT consists of an array of authentication image
descriptors indexed by the image identifiers.

A new header file with TBBR image identifiers has been added.
Platforms that use the TBBR (i.e. ARM platforms) may reuse these
definitions as part of their platform porting.

PLATFORM PORT - IMPORTANT:

Default image IDs have been removed from the platform common
definitions file (common_def.h). As a consequence, platforms that
used those common definitons must now either include the IDs
provided by the TBBR header file or define their own IDs.

*The NVCounter authentication method has not been implemented yet.

Change-Id: I7c4d591863ef53bb0cd4ce6c52a60b06fa0102d5
2015-06-25 08:53:27 +01:00
Juan Castillo 16948ae1d9 Use numbers to identify images instead of names
The Trusted firmware code identifies BL images by name. The platform
port defines a name for each image e.g. the IO framework uses this
mechanism in the platform function plat_get_image_source(). For
a given image name, it returns the handle to the image file which
involves comparing images names. In addition, if the image is
packaged in a FIP, a name comparison is required to find the UUID
for the image. This method is not optimal.

This patch changes the interface between the generic and platform
code with regard to identifying images. The platform port must now
allocate a unique number (ID) for every image. The generic code will
use the image ID instead of the name to access its attributes.

As a result, the plat_get_image_source() function now takes an image
ID as an input parameter. The organisation of data structures within
the IO framework has been rationalised to use an image ID as an index
into an array which contains attributes of the image such as UUID and
name. This prevents the name comparisons.

A new type 'io_uuid_spec_t' has been introduced in the IO framework
to specify images identified by UUID (i.e. when the image is contained
in a FIP file). There is no longer need to maintain a look-up table
[iname_name --> uuid] in the io_fip driver code.

Because image names are no longer mandatory in the platform port, the
debug messages in the generic code will show the image identifier
instead of the file name. The platforms that support semihosting to
load images (i.e. FVP) must provide the file names as definitions
private to the platform.

The ARM platform ports and documentation have been updated accordingly.
All ARM platforms reuse the image IDs defined in the platform common
code. These IDs will be used to access other attributes of an image in
subsequent patches.

IMPORTANT: applying this patch breaks compatibility for platforms that
use TF BL1 or BL2 images or the image loading code. The platform port
must be updated to match the new interface.

Change-Id: I9c1b04cb1a0684c6ee65dee66146dd6731751ea5
2015-06-25 08:53:26 +01:00
Sandrine Bailleux a669527505 Always enable CCI coherency in BL3-1
On ARM standard platforms, snoop and DVM requests used to be enabled
for the primary CPU's cluster only in the first EL3 bootloader.
In other words, if the platform reset into BL1 then CCI coherency
would be enabled by BL1 only, and not by BL3-1 again.

However, this doesn't cater for platforms that use BL3-1 along with
a non-TF ROM bootloader that doesn't enable snoop and DVM requests.
In this case, CCI coherency is never enabled.

This patch modifies the function bl31_early_platform_setup() on
ARM standard platforms so that it always enables snoop and DVM
requests regardless of whether earlier bootloader stages have
already done it. There is no harm in executing this code twice.

ARM Trusted Firmware Design document updated accordingly.

Change-Id: Idf1bdeb24d2e1947adfbb76a509f10beef224e1c
2015-06-01 10:03:32 +01:00
Dan Handley b4315306ad Add common ARM and CSS platform code
This major change pulls out the common functionality from the
FVP and Juno platform ports into the following categories:

*   (include/)plat/common. Common platform porting functionality that
typically may be used by all platforms.

*   (include/)plat/arm/common. Common platform porting functionality
that may be used by all ARM standard platforms. This includes all
ARM development platforms like FVP and Juno but may also include
non-ARM-owned platforms.

*   (include/)plat/arm/board/common. Common platform porting
functionality for ARM development platforms at the board
(off SoC) level.

*   (include/)plat/arm/css/common. Common platform porting
functionality at the ARM Compute SubSystem (CSS) level. Juno
is an example of a CSS-based platform.

*   (include/)plat/arm/soc/common. Common platform porting
functionality at the ARM SoC level, which is not already defined
at the ARM CSS level.

No guarantees are made about the backward compatibility of
functionality provided in (include/)plat/arm.

Also remove any unnecessary variation between the ARM development
platform ports, including:

*   Unify the way BL2 passes `bl31_params_t` to BL3-1. Use the
Juno implementation, which copies the information from BL2 memory
instead of expecting it to persist in shared memory.

*   Unify the TZC configuration. There is no need to add a region
for SCP in Juno; it's enough to simply not allow any access to
this reserved region. Also set region 0 to provide no access by
default instead of assuming this is the case.

*   Unify the number of memory map regions required for ARM
development platforms, although the actual ranges mapped for each
platform may be different. For the FVP port, this reduces the
mapped peripheral address space.

These latter changes will only be observed when the platform ports
are migrated to use the new common platform code in subsequent
patches.

Change-Id: Id9c269dd3dc6e74533d0e5116fdd826d53946dc8
2015-04-28 19:50:56 +01:00