arm-trusted-firmware/make_helpers/defaults.mk

249 lines
6.9 KiB
Makefile
Raw Normal View History

#
# Copyright (c) 2016-2019, ARM Limited and Contributors. All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
#
# Default, static values for build variables, listed in alphabetic order.
# Dependencies between build options, if any, are handled in the top-level
# Makefile, after this file is included. This ensures that the former is better
# poised to handle dependencies, as all build variables would have a default
# value by then.
# Use T32 by default
AARCH32_INSTRUCTION_SET := T32
# The AArch32 Secure Payload to be built as BL32 image
AARCH32_SP := none
# The Target build architecture. Supported values are: aarch64, aarch32.
ARCH := aarch64
# ARM Architecture major and minor versions: 8.0 by default.
ARM_ARCH_MAJOR := 8
ARM_ARCH_MINOR := 0
# Base commit to perform code check on
BASE_COMMIT := origin/master
# Execute BL2 at EL3
BL2_AT_EL3 := 0
# BL2 image is stored in XIP memory, for now, this option is only supported
# when BL2_AT_EL3 is 1.
BL2_IN_XIP_MEM := 0
# Do dcache invalidate upon BL2 entry at EL3
BL2_INV_DCACHE := 1
# Select the branch protection features to use.
BRANCH_PROTECTION := 0
# By default, consider that the platform may release several CPUs out of reset.
# The platform Makefile is free to override this value.
COLD_BOOT_SINGLE_CPU := 0
# Flag to compile in coreboot support code. Exclude by default. The coreboot
# Makefile system will set this when compiling TF as part of a coreboot image.
COREBOOT := 0
# For Chain of Trust
CREATE_KEYS := 1
# Build flag to include AArch32 registers in cpu context save and restore during
# world switch. This flag must be set to 0 for AArch64-only platforms.
CTX_INCLUDE_AARCH32_REGS := 1
# Include FP registers in cpu context
CTX_INCLUDE_FPREGS := 0
# Include pointer authentication (ARMv8.3-PAuth) registers in cpu context. This
# must be set to 1 if the platform wants to use this feature in the Secure
# world. It is not needed to use it in the Non-secure world.
CTX_INCLUDE_PAUTH_REGS := 0
# Debug build
DEBUG := 0
# Build platform
DEFAULT_PLAT := fvp
# Disable the generation of the binary image (ELF only).
DISABLE_BIN_GENERATION := 0
# Enable capability to disable authentication dynamically. Only meant for
# development platforms.
DYN_DISABLE_AUTH := 0
# Build option to enable MPAM for lower ELs
ENABLE_MPAM_FOR_LOWER_ELS := 0
# Flag to Enable Position Independant support (PIE)
ENABLE_PIE := 0
# Flag to enable Performance Measurement Framework
ENABLE_PMF := 0
# Flag to enable PSCI STATs functionality
ENABLE_PSCI_STAT := 0
# Flag to enable runtime instrumentation using PMF
ENABLE_RUNTIME_INSTRUMENTATION := 0
# Flag to enable stack corruption protection
ENABLE_STACK_PROTECTOR := 0
BL31: Introduce Exception Handling Framework EHF is a framework that allows dispatching of EL3 interrupts to their respective handlers in EL3. This framework facilitates the firmware-first error handling policy in which asynchronous exceptions may be routed to EL3. Such exceptions may be handed over to respective exception handlers. Individual handlers might further delegate exception handling to lower ELs. The framework associates the delegated execution to lower ELs with a priority value. For interrupts, this corresponds to the priorities programmed in GIC; for other types of exceptions, viz. SErrors or Synchronous External Aborts, individual dispatchers shall explicitly associate delegation to a secure priority. In order to prevent lower priority interrupts from preempting higher priority execution, the framework provides helpers to control preemption by virtue of programming Priority Mask register in the interrupt controller. This commit allows for handling interrupts targeted at EL3. Exception handlers own interrupts by assigning them a range of secure priorities, and registering handlers for each priority range it owns. Support for exception handling in BL31 image is enabled by setting the build option EL3_EXCEPTION_HANDLING=1. Documentation to follow. NOTE: The framework assumes the priority scheme supported by platform interrupt controller is compliant with that of ARM GIC architecture (v2 or later). Change-Id: I7224337e4cea47c6ca7d7a4ca22a3716939f7e42 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
2017-09-22 08:32:10 +01:00
# Flag to enable exception handling in EL3
EL3_EXCEPTION_HANDLING := 0
# Flag to enable Branch Target Identification.
# Internal flag not meant for direct setting.
# Use BRANCH_PROTECTION to enable BTI.
ENABLE_BTI := 0
# Flag to enable Pointer Authentication.
# Internal flag not meant for direct setting.
# Use BRANCH_PROTECTION to enable PAUTH.
ENABLE_PAUTH := 0
# Build flag to treat usage of deprecated platform and framework APIs as error.
ERROR_DEPRECATED := 0
# Fault injection support
FAULT_INJECTION_SUPPORT := 0
# Byte alignment that each component in FIP is aligned to
FIP_ALIGN := 0
# Default FIP file name
FIP_NAME := fip.bin
# Default FWU_FIP file name
FWU_FIP_NAME := fwu_fip.bin
# For Chain of Trust
GENERATE_COT := 0
# Hint platform interrupt control layer that Group 0 interrupts are for EL3. By
# default, they are for Secure EL1.
GICV2_G0_FOR_EL3 := 0
# Route External Aborts to EL3. Disabled by default; External Aborts are handled
# by lower ELs.
HANDLE_EA_EL3_FIRST := 0
# Whether system coherency is managed in hardware, without explicit software
# operations.
HW_ASSISTED_COHERENCY := 0
# Set the default algorithm for the generation of Trusted Board Boot keys
KEY_ALG := rsa
# NS timer register save and restore
NS_TIMER_SWITCH := 0
# Include lib/libc in the final image
OVERRIDE_LIBC := 0
# Build PL011 UART driver in minimal generic UART mode
PL011_GENERIC_UART := 0
# By default, consider that the platform's reset address is not programmable.
# The platform Makefile is free to override this value.
PROGRAMMABLE_RESET_ADDRESS := 0
# Flag used to choose the power state format: Extended State-ID or Original
PSCI_EXTENDED_STATE_ID := 0
# Enable RAS support
RAS_EXTENSION := 0
# By default, BL1 acts as the reset handler, not BL31
RESET_TO_BL31 := 0
# For Chain of Trust
SAVE_KEYS := 0
# Software Delegated Exception support
SDEI_SUPPORT := 0
# Whether code and read-only data should be put on separate memory pages. The
# platform Makefile is free to override this value.
SEPARATE_CODE_AND_RODATA := 0
# Put NOBITS sections (.bss, stacks, page tables, and coherent memory) in a
# separate memory region, which may be discontiguous from the rest of BL31.
SEPARATE_NOBITS_REGION := 0
# If the BL31 image initialisation code is recalimed after use for the secondary
# cores stack
RECLAIM_INIT_CODE := 0
# SPD choice
SPD := none
# Enable the Management Mode (MM)-based Secure Partition Manager implementation
SPM_MM := 0
# Flag to introduce an infinite loop in BL1 just before it exits into the next
# image. This is meant to help debugging the post-BL2 phase.
SPIN_ON_BL1_EXIT := 0
# Flags to build TF with Trusted Boot support
TRUSTED_BOARD_BOOT := 0
# Build option to choose whether Trusted Firmware uses Coherent memory or not.
USE_COHERENT_MEM := 1
# Build option to add debugfs support
USE_DEBUGFS := 0
# Build option to choose whether Trusted Firmware uses library at ROM
USE_ROMLIB := 0
# Use tbbr_oid.h instead of platform_oid.h
USE_TBBR_DEFS := 1
# Build verbosity
V := 0
# Whether to enable D-Cache early during warm boot. This is usually
# applicable for platforms wherein interconnect programming is not
# required to enable cache coherency after warm reset (eg: single cluster
# platforms).
WARMBOOT_ENABLE_DCACHE_EARLY := 0
# Build option to enable/disable the Statistical Profiling Extensions
ENABLE_SPE_FOR_LOWER_ELS := 1
# SPE is only supported on AArch64 so disable it on AArch32.
ifeq (${ARCH},aarch32)
override ENABLE_SPE_FOR_LOWER_ELS := 0
endif
# Include Memory Tagging Extension registers in cpu context. This must be set
# to 1 if the platform wants to use this feature in the Secure world and MTE is
# enabled at ELX.
CTX_INCLUDE_MTE_REGS := 0
ENABLE_AMU := 0
# By default, enable Scalable Vector Extension if implemented for Non-secure
# lower ELs
# Note SVE is only supported on AArch64 - therefore do not enable in AArch32
ifneq (${ARCH},aarch32)
ENABLE_SVE_FOR_NS := 1
else
override ENABLE_SVE_FOR_NS := 0
endif
SANITIZE_UB := off
# For ARMv8.1 (AArch64) platforms, enabling this option selects the spinlock
# implementation variant using the ARMv8.1-LSE compare-and-swap instruction.
# Default: disabled
USE_SPINLOCK_CAS := 0
# Enable Link Time Optimization
ENABLE_LTO := 0