Commit Graph

83 Commits

Author SHA1 Message Date
Soby Mathew 4c0d039076 Rework type usage in Trusted Firmware
This patch reworks type usage in generic code, drivers and ARM platform files
to make it more portable. The major changes done with respect to
type usage are as listed below:

* Use uintptr_t for storing address instead of uint64_t or unsigned long.
* Review usage of unsigned long as it can no longer be assumed to be 64 bit.
* Use u_register_t for register values whose width varies depending on
  whether AArch64 or AArch32.
* Use generic C types where-ever possible.

In addition to the above changes, this patch also modifies format specifiers
in print invocations so that they are AArch64/AArch32 agnostic. Only files
related to upcoming feature development have been reworked.

Change-Id: I9f8c78347c5a52ba7027ff389791f1dad63ee5f8
2016-07-18 17:52:15 +01:00
Sandrine Bailleux 91fad6551e ARM CSS platforms: Map flash as execute-never by default
On ARM CSS platforms, the whole flash used to be mapped as executable.
This is not required, given that the flash is used to store the BL1
and FIP images and:

 - The FIP is not executed in place, its images are copied to RAM
   and executed from there.

 - BL1 is executed in place from flash but only its code needs to be
   mapped as executable and platform code takes care of re-mapping
   BL1's read-only section as executable.

Therefore, this patch now maps the flash as non-executable by default
on these platforms. This increases security by restricting the
executable region to what is strictly needed.

This patch also adds some comments to clarify the memory mapping
attributes on these platforms.

Change-Id: I4db3c145508bea1f43fbe0f6dcd551e1aec1ecd3
2016-07-08 14:55:11 +01:00
Sandrine Bailleux b5fa6563e6 Introduce arm_setup_page_tables() function
This patch introduces the arm_setup_page_tables() function to
set up page tables on ARM platforms. It replaces the
arm_configure_mmu_elx() functions and does the same thing except
that it doesn't enable the MMU at the end. The idea is to reduce
the amount of per-EL code that is generated by the C preprocessor
by splitting the memory regions definitions and page tables creation
(which is generic) from the MMU enablement (which is the only per-EL
configuration).

As a consequence, the call to the enable_mmu_elx() function has been
moved up into the plat_arch_setup() hook. Any other ARM standard
platforms that use the functions `arm_configure_mmu_elx()` must be
updated.

Change-Id: I6f12a20ce4e5187b3849a8574aac841a136de83d
2016-07-08 14:37:11 +01:00
Soby Mathew d75f2578bb Enable PSCI_STAT_COUNT/RESIDENCY for ARM standard platforms
This patch enables optional PSCI functions `PSCI_STAT_COUNT` and
`PSCI_STAT_RESIDENCY` for ARM standard platforms. The optional platform
API 'translate_power_state_by_mpidr()' is implemented for the Juno
platform. 'validate_power_state()' on Juno downgrades PSCI CPU_SUSPEND
requests for the system power level to the cluster power level.
Hence, it is not suitable for validating the 'power_state' parameter
passed in a PSCI_STAT_COUNT/RESIDENCY call.

Change-Id: I9548322676fa468d22912392f2325c2a9f96e4d2
2016-06-16 08:55:00 +01:00
danh-arm 11ec6c598f Merge pull request #641 from antonio-nino-diaz-arm/an/fvp-set-nv-ctr
Implement plat_set_nv_ctr for FVP platforms
2016-06-03 17:27:45 +01:00
danh-arm aed634fea6 Merge pull request #637 from yatharth-arm/yk/genfw-1134
Add support for ARM Cortex-A73 MPCore Processor
2016-06-03 15:12:51 +01:00
Antonio Nino Diaz fe7de03546 Implement plat_set_nv_ctr for FVP platforms
Replaced placeholder implementation of plat_set_nv_ctr for FVP
platforms by a working one.

On FVP, the mapping of region DEVICE2 has been changed from RO to RW
to prevent exceptions when writing to the NV counter, which is
contained in this region.

Change-Id: I56a49631432ce13905572378cbdf106f69c82f57
2016-06-03 11:17:03 +01:00
Yatharth Kochar 2460ac18ef Add support for ARM Cortex-A73 MPCore Processor
This patch adds ARM Cortex-A73 MPCore Processor support
in the CPU specific operations framework. It also includes
this support for the Base FVP port.

Change-Id: I0e26b594f2ec1d28eb815db9810c682e3885716d
2016-06-01 12:07:41 +01:00
Soby Mathew 7123787616 Add CCN support to FVP platform port
This patch adds support to select CCN driver for FVP during build.
A new build option `FVP_INTERCONNECT_DRIVER` is added to allow
selection between the CCI and CCN driver. Currently only the CCN-502
variant is supported on FVP.

The common ARM CCN platform helper file now verifies the cluster
count declared by platform is equal to the number of root node
masters exported by the ARM Standard platform.

Change-Id: I71d7b4785f8925ed499c153b2e9b9925fcefd57a
2016-05-25 10:25:16 +01:00
Antonio Nino Diaz 32cd95f094 Replace SP804 timer by generic delay timer on FVP
Added a build flag to select the generic delay timer on FVP instead
of the SP804 timer. By default, the generic one will be selected. The
user guide has been updated.

Change-Id: Ica34425c6d4ed95a187b529c612f6d3b26b78bc6
2016-05-20 15:29:30 +01:00
Soby Mathew a8af6a4d2a Change the default driver to GICv3 in FVP
This patch changes the default driver for FVP platform from the deprecated
GICv3 legacy to the GICv3 only driver. This means that the default build of
Trusted Firmware will not be able boot Linux kernel with GICv2 FDT blob. The
user guide is also updated to reflect this change of default GIC driver for
FVP.

Change-Id: Id6fc8c1ac16ad633dabb3cd189b690415a047764
2016-04-28 11:12:36 +01:00
Soby Mathew 21a3973de0 Remove support for legacy VE memory map in FVP
This patch removes support for legacy Versatile Express memory map for the
GIC peripheral in the FVP platform. The user guide is also updated for the
same.

Change-Id: Ib8cfb819083aca359e5b46b5757cb56cb0ea6533
2016-04-27 16:59:20 +01:00
Gerald Lejeune 9ff67fa6f2 Dump platform-defined regs in crash reporting
It is up to the platform to implement the new plat_crash_print_regs macro to
report all relevant platform registers helpful for troubleshooting.

plat_crash_print_regs merges or calls previously defined plat_print_gic_regs
and plat_print_interconnect_regs macros for each existing platforms.

NOTE: THIS COMMIT REQUIRES ALL PLATFORMS THAT ENABLE THE `CRASH_REPORTING`
BUILD FLAG TO MIGRATE TO USE THE NEW `plat_crash_print_regs()` MACRO. BY
DEFAULT, `CRASH_REPORTING` IS ENABLED IN DEBUG BUILDS FOR ALL PLATFORMS.

Fixes: arm-software/tf-issues#373

Signed-off-by: Gerald Lejeune <gerald.lejeune@st.com>
2016-04-14 17:50:22 +02:00
Soby Mathew 3e4b8fdcd3 Migrate platform ports to the new xlat_tables library
This patch modifies the upstream platform port makefiles to use the new
xlat_tables library files. This patch also makes mmap region setup common
between AArch64 and AArch32 for FVP platform port. The file `fvp_common.c`
is moved from the `plat/arm/board/fvp/aarch64` folder to the parent folder
as it is not specific to AArch64.

Change-Id: Id2e9aac45e46227b6f83cccfd1e915404018ea0b
2016-04-13 12:06:23 +01:00
danh-arm 105b59e7bb Merge pull request #575 from soby-mathew/sm/new_tzc_driver
Refactor the TZC driver and add DMC-500 driver
2016-04-07 17:11:20 +01:00
danh-arm 5d29c76015 Merge pull request #572 from jcastillo-arm/jc/tbb_nvcounter
TBB NVcounter support
2016-04-07 17:10:44 +01:00
Soby Mathew 57f782019a Migrate ARM standard platforms to the refactored TZC driver
This patch migrates ARM Standard platforms to the refactored TZC driver.

Change-Id: I2a2f60b645f73e14d8f416740c4551cec87cb1fb
2016-03-31 21:23:23 +01:00
Juan Castillo 48279d52a7 TBB: add non-volatile counter support
This patch adds support for non-volatile counter authentication to
the Authentication Module. This method consists of matching the
counter values provided in the certificates with the ones stored
in the platform. If the value from the certificate is lower than
the platform, the boot process is aborted. This mechanism protects
the system against rollback.

The TBBR CoT has been updated to include this method as part of the
authentication process. Two counters are used: one for the trusted
world images and another for the non trusted world images.

** NEW PLATFORM APIs (mandatory when TBB is enabled) **

int plat_get_nv_ctr(void *cookie, unsigned int *nv_ctr);

    This API returns the non-volatile counter value stored
    in the platform. The cookie in the first argument may be
    used to select the counter in case the platform provides
    more than one (i.e. TBSA compliant platforms must provide
    trusted and non-trusted counters). This cookie is specified
    in the CoT.

int plat_set_nv_ctr(void *cookie, unsigned int nv_ctr);

    This API sets a new counter value. The cookie may be
    used to select the counter to be updated.

An implementation of these new APIs for ARM platforms is also
provided. The values are obtained from the Trusted Non-Volatile
Counters peripheral. The cookie is used to pass the extension OID.
This OID may be interpreted by the platform to know which counter
must return. On Juno, The trusted and non-trusted counter values
have been tied to 31 and 223, respectively, and cannot be modified.

** IMPORTANT **

THIS PATCH BREAKS THE BUILD WHEN TRUSTED_BOARD_BOOT IS ENABLED. THE
NEW PLATFORM APIs INTRODUCED IN THIS PATCH MUST BE IMPLEMENTED IN
ORDER TO SUCCESSFULLY BUILD TF.

Change-Id: Ic943b76b25f2a37f490eaaab6d87b4a8b3cbc89a
2016-03-31 13:29:17 +01:00
David Wang 4518dd9a9c Add support to load BL31 in DRAM
This patch adds an option to the ARM common platforms to load BL31 in the
TZC secured DRAM instead of the default secure SRAM.

To enable this feature, set `ARM_BL31_IN_DRAM` to 1 in build options.
If TSP is present, then setting this option also sets the TSP location
to DRAM and ignores the `ARM_TSP_RAM_LOCATION` build flag.

To use this feature, BL2 platform code must map in the DRAM used by
BL31. The macro ARM_MAP_BL31_SEC_DRAM is provided for this purpose.
Currently, only the FVP BL2 platform code maps in this DRAM.

Change-Id: If5f7cc9deb569cfe68353a174d4caa48acd78d67
2016-03-31 10:14:01 +08:00
Antonio Nino Diaz 1c3ea103d2 Remove all non-configurable dead loops
Added a new platform porting function plat_panic_handler, to allow
platforms to handle unexpected error situations. It must be
implemented in assembly as it may be called before the C environment
is initialized. A default implementation is provided, which simply
spins.

Corrected all dead loops in generic code to call this function
instead. This includes the dead loop that occurs at the end of the
call to panic().

All unnecesary wfis from bl32/tsp/aarch64/tsp_exceptions.S have
been removed.

Change-Id: I67cb85f6112fa8e77bd62f5718efcef4173d8134
2016-03-14 16:41:18 +00:00
danh-arm 9931932bfd Merge pull request #532 from soby-mathew/vk/configure_mmap_macros
Rationalise MMU and Page table related constants on ARM platforms
2016-02-22 13:23:49 +00:00
Vikram Kanigiri c64a04486f Rationalise MMU and Page table related constants on ARM platforms
`board_arm_def.h` contains multiple definitions of
`PLAT_ARM_MMAP_ENTRIES` and `MAX_XLAT_TABLES` that are optimised for
memory usage depending upon the chosen build configuration. To ease
maintenance of these constants, this patch replaces their multiple
definitions with a single set of definitions that will work on all ARM
platforms.

Platforms can override the defaults with optimal values by enabling the
`ARM_BOARD_OPTIMISE_MMAP` build option. An example has been provided in
the Juno ADP port.

Additionally, `PLAT_ARM_MMAP_ENTRIES` is increased by one to accomodate
future ARM platforms.

Change-Id: I5ba6490fdd1e118cc9cc2d988ad7e9c38492b6f0
2016-02-22 11:01:10 +00:00
danh-arm f62d89ed86 Merge pull request #531 from soby-mathew/sm/multicluster_fvp
Allow multi cluster topology definitions for ARM platforms
2016-02-19 18:21:34 +00:00
Soby Mathew 0108047ae4 Allow multi cluster topology definitions for ARM platforms
The common topology description helper funtions and macros for
ARM Standard platforms assumed a dual cluster system. This is not
flexible enough to scale to multi cluster platforms. This patch does
the following changes for more flexibility in defining topology:

1. The `plat_get_power_domain_tree_desc()` definition is moved from
   `arm_topology.c` to platform specific files, that is `fvp_topology.c`
   and `juno_topology.c`. Similarly the common definition of the porting
   macro `PLATFORM_CORE_COUNT` in `arm_def.h` is moved to platform
   specific `platform_def.h` header.

2. The ARM common layer porting macros which were dual cluster specific
   are now removed and a new macro PLAT_ARM_CLUSTER_COUNT is introduced
   which must be defined by each ARM standard platform.

3. A new mandatory ARM common layer porting API
   `plat_arm_get_cluster_core_count()` is introduced to enable the common
   implementation of `arm_check_mpidr()` to validate MPIDR.

4. For the FVP platforms, a new build option `FVP_NUM_CLUSTERS` has been
   introduced which allows the user to specify the cluster count to be
   used to build the topology tree within Trusted Firmare. This enables
   Trusted Firmware to be built for multi cluster FVP models.

Change-Id: Ie7a2e38e5661fe2fdb2c8fdf5641d2b2614c2b6b
2016-02-19 09:18:52 +00:00
danh-arm 85df7e44ce Merge pull request #523 from jcastillo-arm/jc/genfw-791
ARM platforms: rationalise memory attributes of shared memory
2016-02-18 18:36:00 +00:00
Juan Castillo 74eb26e409 ARM platforms: rationalise memory attributes of shared memory
The shared memory region on ARM platforms contains the mailboxes and,
on Juno, the payload area for communication with the SCP. This shared
memory may be configured as normal memory or device memory at build
time by setting the platform flag 'PLAT_ARM_SHARED_RAM_CACHED' (on
Juno, the value of this flag is defined by 'MHU_PAYLOAD_CACHED').
When set as normal memory, the platform port performs the corresponding
cache maintenance operations. From a functional point of view, this is
the equivalent of setting the shared memory as device memory, so there
is no need to maintain both options.

This patch removes the option to specify the shared memory as normal
memory on ARM platforms. Shared memory is always treated as device
memory. Cache maintenance operations are no longer needed and have
been replaced by data memory barriers to guarantee that payload and
MHU are accessed in the right order.

Change-Id: I7f958621d6a536dd4f0fa8768385eedc4295e79f
2016-02-18 09:31:15 +00:00
Vikram Kanigiri 6355f2347a Rework use of interconnect drivers
ARM Trusted Firmware supports 2 different interconnect peripheral
drivers: CCI and CCN. ARM platforms are implemented using either of the
interconnect peripherals.

This patch adds a layer of abstraction to help ARM platform ports to
choose the right interconnect driver and corresponding platform support.
This is as described below:

1. A set of ARM common functions have been implemented to initialise an
interconnect and for entering/exiting a cluster from coherency. These
functions are prefixed as "plat_arm_interconnect_". Weak definitions of
these functions have been provided for each type of driver.

2.`plat_print_interconnect_regs` macro used for printing CCI registers is
moved from a common arm_macros.S to cci_macros.S.

3. The `ARM_CONFIG_HAS_CCI` flag used in `arm_config_flags` structure
is renamed to `ARM_CONFIG_HAS_INTERCONNECT`.

Change-Id: I02f31184fbf79b784175892d5ce1161b65a0066c
2016-02-16 20:09:49 +00:00
danh-arm 3aef80f5b2 Merge pull request #521 from vikramkanigiri/vk/rearchitect_security
Perform security setup separately for each ARM platform
2016-02-16 12:47:05 +00:00
danh-arm e45264ab22 Merge pull request #520 from vikramkanigiri/vk/scp_flexibility
Vk/scp flexibility
2016-02-16 12:46:28 +00:00
Vikram Kanigiri a9cc84d7f7 Perform security setup separately for each ARM platform
Prior to this patch, it was assumed that on all ARM platforms the bare
minimal security setup required is to program TrustZone protection. This
would always be done by programming the TZC-400 which was assumed to be
present in all ARM platforms. The weak definition of
platform_arm_security_setup() in plat/arm/common/arm_security.c
reflected these assumptions.

In reality, each ARM platform either decides at runtime whether
TrustZone protection needs to be programmed (e.g. FVPs) or performs
some security setup in addition to programming TrustZone protection
(e.g. NIC setup on Juno). As a result, the weak definition of
plat_arm_security_setup() is always overridden.

When a platform needs to program TrustZone protection and implements the
TZC-400 peripheral, it uses the arm_tzc_setup() function to do so. It is
also possible to program TrustZone protection through other peripherals
that include a TrustZone controller e.g. DMC-500. The programmer's
interface is slightly different across these various peripherals.

In order to satisfy the above requirements, this patch makes the
following changes to the way security setup is done on ARM platforms.

1. arm_security.c retains the definition of arm_tzc_setup() and has been
   renamed to arm_tzc400.c. This is to reflect the reliance on the
   TZC-400 peripheral to perform TrustZone programming. The new file is
   not automatically included in all platform ports through
   arm_common.mk. Each platform must include it explicitly in a platform
   specific makefile if needed.

   This approach enables introduction of similar library code to program
   TrustZone protection using a different peripheral. This code would be
   used by the subset of ARM platforms that implement this peripheral.

2. Due to #1 above, existing platforms which implements the TZC-400 have been
   updated to include the necessary files for both BL2, BL2U and BL31
   images.

Change-Id: I513c58f7a19fff2e9e9c3b95721592095bcb2735
2016-02-15 11:20:54 +00:00
Vikram Kanigiri 8e083ecd66 Support for varying BOM/SCPI protocol base addresses in ARM platforms
Current code assumes `SCP_COM_SHARED_MEM_BASE` as the base address
for BOM/SCPI protocol between AP<->SCP on all CSS platforms. To
cater for future ARM platforms this is made platform specific.
Similarly, the bit shifts of `SCP_BOOT_CONFIG_ADDR` are also made
platform specific.

Change-Id: Ie8866c167abf0229a37b3c72576917f085c142e8
2016-02-15 11:00:57 +00:00
Vikram Kanigiri 421295a017 Add support for SSC_VERSION register on CSS platforms
Each ARM Compute Subsystem based platform implements a System Security
Control (SSC) Registers Unit. The SSC_VERSION register inside it carries
information to identify the platform. This enables ARM Trusted Firmware
to compile in support for multiple ARM platforms and choose one at
runtime. This patch adds macros to enable access to this register.
Each platform is expected to export its PART_NUMBER separately.

Additionally, it also adds juno part number.

Change-Id: I2b1d5f5b65a9c7b76c6f64480cc7cf0aef019422
2016-02-11 17:04:02 +00:00
Vikram Kanigiri ecf70f7bdb Re-factor definition of some macros on ARM platforms
This patch moves the definition of some macros used only on
ARM platforms from common headers to platform specific headers.
It also forces all ARM standard platforms to have distinct
definitions (even if they are usually the same).
 1. `PLAT_ARM_TZC_BASE` and `PLAT_ARM_NSTIMER_FRAME_ID` have been
     moved from `css_def.h` to `platform_def.h`.
 2. `MHU_BASE` used in CSS platforms is moved from common css_def.h
    to platform specific header `platform_def.h` on Juno and
    renamed as `PLAT_ARM_MHU_BASE`.
 3. To cater for different sizes of BL images, new macros like
    `PLAT_ARM_MAX_BL31_SIZE` have been created for each BL image. All
    ARM platforms need to define them for each image.

Change-Id: I9255448bddfad734b387922aa9e68d2117338c3f
2016-02-11 17:04:02 +00:00
Sandrine Bailleux b13ed5efc2 FVP: Compile ARM Cortex-A72 CPU support in
This patch enables the ARM Cortex-A72 support in BL1 and BL31 on FVP.
This allows the same TF binaries to run on a Cortex-A72 based FVP
without recompiling them.

Change-Id: I4eb6bbad9f0e5d8704613f7c685c3bd22b45cf47
2016-01-13 09:14:12 +00:00
Sandrine Bailleux 820756e933 Add support for ARM Cortex-A35 processor
This patch adds support for ARM Cortex-A35 processor in the CPU
specific framework, as described in the Cortex-A35 TRM (r0p0).

Change-Id: Ief930a0bdf6cd82f6cb1c3b106f591a71c883464
2016-01-12 09:25:12 +00:00
Sandrine Bailleux 1645d3ee60 Miscellaneous doc fixes for v1.2
Change-Id: I6f49bd779f2a4d577c6443dd160290656cdbc59b
2015-12-21 18:10:12 +00:00
Sandrine Bailleux 0f09c8f748 Remove out-dated comment in FVP PWRC code
fvp_pwr_domain_on() used to program the CPUs mailbox. This changed
with commit 804040d10 but the comment documenting this code still
refers to the mailbox programming. This patch removes this out-dated
information.

Change-Id: Ibfe2a426bdda6e71f20c83a99cb223ceca9c559c
2015-12-21 16:51:21 +00:00
Dan Handley 1f37b9442f FWU: Pass client cookie to FWU_SMC_UPDATE_DONE
The current FWU_SMC_UPDATE_DONE implementation incorrectly passes
an unused framework cookie through to the 1st argument in the
platform function `bl1_plat_fwu_done`. The intent is to allow
the SMC caller to pass a cookie through to this function.

This patch fixes FWU_SMC_UPDATE_DONE to pass x1 from the caller
through to `bl1_plat_fwu_done`. The argument names are updated
for clarity.

Upstream platforms currently do not use this argument so no
impact is expected.

Change-Id: I107f4b51eb03e7394f66d9a534ffab1cbc09a9b2
2015-12-15 14:33:25 +00:00
Juan Castillo d178637d2b Remove dashes from image names: 'BL3-x' --> 'BL3x'
This patch removes the dash character from the image name, to
follow the image terminology in the Trusted Firmware Wiki page:

    https://github.com/ARM-software/arm-trusted-firmware/wiki

Changes apply to output messages, comments and documentation.

non-ARM platform files have been left unmodified.

Change-Id: Ic2a99be4ed929d52afbeb27ac765ceffce46ed76
2015-12-14 12:31:37 +00:00
Juan Castillo 516beb585c TBB: apply TBBR naming convention to certificates and extensions
This patch applies the TBBR naming convention to the certificates
and the corresponding extensions defined by the CoT:

    * Certificate UUID names
    * Certificate identifier names
    * OID names

Changes apply to:

    * Generic code (variables and defines)
    * The default certificate identifiers provided in the generic
      code
    * Build system
    * ARM platforms port
    * cert_create tool internal definitions
    * fip_create and cert_create tools command line options
    * Documentation

IMPORTANT: this change breaks the compatibility with platforms
that use TBBR. The platform will need to adapt the identifiers
and OIDs to the TBBR naming convention introduced by this patch:

Certificate UUIDs:

    UUID_TRUSTED_BOOT_FIRMWARE_BL2_CERT --> UUID_TRUSTED_BOOT_FW_CERT
    UUID_SCP_FIRMWARE_BL30_KEY_CERT --> UUID_SCP_FW_KEY_CERT
    UUID_SCP_FIRMWARE_BL30_CERT --> UUID_SCP_FW_CONTENT_CERT
    UUID_EL3_RUNTIME_FIRMWARE_BL31_KEY_CERT --> UUID_SOC_FW_KEY_CERT
    UUID_EL3_RUNTIME_FIRMWARE_BL31_CERT --> UUID_SOC_FW_CONTENT_CERT
    UUID_SECURE_PAYLOAD_BL32_KEY_CERT --> UUID_TRUSTED_OS_FW_KEY_CERT
    UUID_SECURE_PAYLOAD_BL32_CERT --> UUID_TRUSTED_OS_FW_CONTENT_CERT
    UUID_NON_TRUSTED_FIRMWARE_BL33_KEY_CERT --> UUID_NON_TRUSTED_FW_KEY_CERT
    UUID_NON_TRUSTED_FIRMWARE_BL33_CERT --> UUID_NON_TRUSTED_FW_CONTENT_CERT

Certificate identifiers:

    BL2_CERT_ID --> TRUSTED_BOOT_FW_CERT_ID
    BL30_KEY_CERT_ID --> SCP_FW_KEY_CERT_ID
    BL30_CERT_ID --> SCP_FW_CONTENT_CERT_ID
    BL31_KEY_CERT_ID --> SOC_FW_KEY_CERT_ID
    BL31_CERT_ID --> SOC_FW_CONTENT_CERT_ID
    BL32_KEY_CERT_ID --> TRUSTED_OS_FW_KEY_CERT_ID
    BL32_CERT_ID --> TRUSTED_OS_FW_CONTENT_CERT_ID
    BL33_KEY_CERT_ID --> NON_TRUSTED_FW_KEY_CERT_ID
    BL33_CERT_ID --> NON_TRUSTED_FW_CONTENT_CERT_ID

OIDs:

    TZ_FW_NVCOUNTER_OID --> TRUSTED_FW_NVCOUNTER_OID
    NTZ_FW_NVCOUNTER_OID --> NON_TRUSTED_FW_NVCOUNTER_OID
    BL2_HASH_OID --> TRUSTED_BOOT_FW_HASH_OID
    TZ_WORLD_PK_OID --> TRUSTED_WORLD_PK_OID
    NTZ_WORLD_PK_OID --> NON_TRUSTED_WORLD_PK_OID
    BL30_CONTENT_CERT_PK_OID --> SCP_FW_CONTENT_CERT_PK_OID
    BL30_HASH_OID --> SCP_FW_HASH_OID
    BL31_CONTENT_CERT_PK_OID --> SOC_FW_CONTENT_CERT_PK_OID
    BL31_HASH_OID --> SOC_AP_FW_HASH_OID
    BL32_CONTENT_CERT_PK_OID --> TRUSTED_OS_FW_CONTENT_CERT_PK_OID
    BL32_HASH_OID --> TRUSTED_OS_FW_HASH_OID
    BL33_CONTENT_CERT_PK_OID --> NON_TRUSTED_FW_CONTENT_CERT_PK_OID
    BL33_HASH_OID --> NON_TRUSTED_WORLD_BOOTLOADER_HASH_OID
    BL2U_HASH_OID --> AP_FWU_CFG_HASH_OID
    SCP_BL2U_HASH_OID --> SCP_FWU_CFG_HASH_OID
    NS_BL2U_HASH_OID --> FWU_HASH_OID

Change-Id: I1e047ae046299ca913911c39ac3a6e123bd41079
2015-12-14 12:29:44 +00:00
danh-arm 7ee2b8b3f8 Merge pull request #462 from soby-mathew/sm/runtime_console
Enable BL31 to configure a runtime console
2015-12-09 19:03:06 +00:00
Yatharth Kochar dcda29f637 FWU: Add Firmware Update support in BL2U for ARM platforms
This patch adds support for Firmware update in BL2U for ARM
platforms such that TZC initialization is performed on all
ARM platforms and (optionally) transfer of SCP_BL2U image on
ARM CSS platforms.

BL2U specific functions are added to handle early_platform and
plat_arch setup. The MMU is configured to map in the BL2U
code/data area and other required memory.

Change-Id: I57863295a608cc06e6cbf078b7ce34cbd9733e4f
2015-12-09 17:41:19 +00:00
Yatharth Kochar 436223def6 FWU: Add Firmware Update support in BL1 for ARM platforms
This patch adds Firmware Update support for ARM platforms.

New files arm_bl1_fwu.c and juno_bl1_setup.c were added to provide
platform specific Firmware update code.

BL1 now includes mmap entry for `ARM_MAP_NS_DRAM1` to map DRAM for
authenticating NS_BL2U image(For both FVP and JUNO platform).

Change-Id: Ie116cd83f5dc00aa53d904c2f1beb23d58926555
2015-12-09 17:41:18 +00:00
Soby Mathew 080225dacd Specify BL31 runtime console for ARM Standard platforms
This patch overrides the default weak definition of
`bl31_plat_runtime_setup()` for ARM Standard platforms to
specify a BL31 runtime console. ARM Standard platforms are
now expected to define `PLAT_ARM_BL31_RUN_UART_BASE` and
`PLAT_ARM_BL31_RUN_UART_CLK_IN_HZ` macros which is required
by `arm_bl31_plat_runtime_setup()` to initialize the runtime
console.

The system suspend resume helper `arm_system_pwr_domain_resume()`
is fixed to initialize the runtime console rather than the boot
console on resumption from system suspend.

Fixes ARM-software/tf-issues#220

Change-Id: I80eafe5b6adcfc7f1fdf8b99659aca1c64d96975
2015-12-09 17:29:55 +00:00
danh-arm 4ca473db0d Merge pull request #456 from soby-mathew/sm/gicv3-tsp-plat-changes-v2
Modify TSP and ARM standard platforms for new GIC drivers v2
2015-12-09 10:41:08 +00:00
Achin Gupta 27573c59a6 Rework use of ARM GIC drivers on ARM platforms
Suport for ARM GIC v2.0 and v3.0 drivers has been reworked to create three
separate drivers instead of providing a single driver that can work on both
versions of the GIC architecture. These drivers correspond to the following
software use cases:

1. A GICv2 only driver that can run only on ARM GIC v2.0 implementations
   e.g. GIC-400

2. A GICv3 only driver that can run only on ARM GIC v3.0 implementations
   e.g. GIC-500 in a mode where all interrupt regimes use GICv3 features

3. A deprecated GICv3 driver that operates in legacy mode. This driver can
   operate only in the GICv2 mode in the secure world. On a GICv3 system, this
   driver allows normal world to run in either GICv3 mode (asymmetric mode)
   or in the GICv2 mode. Both modes of operation are deprecated on GICv3
   systems.

ARM platforms implement both versions of the GIC architecture. This patch adds a
layer of abstraction to help ARM platform ports chose the right GIC driver and
corresponding platform support. This is as described below:

1. A set of ARM common functions have been introduced to initialise the GIC and
   the driver during cold and warm boot. These functions are prefixed as
   "plat_arm_gic_". Weak definitions of these functions have been provided for
   each type of driver.

2. Each platform includes the sources that implement the right functions
   directly into the its makefile. The FVP can be instantiated with different
   versions of the GIC architecture. It uses the FVP_USE_GIC_DRIVER build option
   to specify which of the three drivers should be included in the build.

3. A list of secure interrupts has to be provided to initialise each of the
  three GIC drivers. For GIC v3.0 the interrupt ids have to be further
  categorised as Group 0 and Group 1 Secure interrupts. For GIC v2.0, the two
  types are merged and treated as Group 0 interrupts.

  The two lists of interrupts are exported from the platform_def.h. The lists
  are constructed by adding a list of board specific interrupt ids to a list of
  ids common to all ARM platforms and Compute sub-systems.

This patch also makes some fields of `arm_config` data structure in FVP redundant
and these unused fields are removed.

Change-Id: Ibc8c087be7a8a6b041b78c2c3bd0c648cd2035d8
2015-12-09 09:58:17 +00:00
Soby Mathew f14d188681 Prepare platforms to use refactored ARM GIC drivers
This patch adds platform helpers for the new GICv2 and GICv3 drivers in
plat_gicv2.c and plat_gicv3.c. The platforms can include the appropriate
file in their build according to the GIC driver to be used. The existing
plat_gic.c is only meant for the legacy GIC driver.

In the case of ARM platforms, the major changes are as follows:

1. The crash reporting helper macro `arm_print_gic_regs` that prints the GIC CPU
   interface register values has been modified to detect the type of CPU
   interface being used (System register or memory mappped interface) before
   using the right interface to print the registers.

2. The power management helper function that is called after a core is powered
   up has been further refactored. This is to highlight that the per-cpu
   distributor interface should be initialised only when the core was originally
   powered down using the CPU_OFF PSCI API and not when the CPU_SUSPEND PSCI API
   was used.

3. In the case of CSS platforms, the system power domain restore helper
   `arm_system_pwr_domain_resume()` is now only invoked in the `suspend_finish`
   handler as the system power domain is always expected to be initialized when
   the `on_finish` handler is invoked.

Change-Id: I7fc27d61fc6c2a60cea2436b676c5737d0257df6
2015-12-09 09:56:53 +00:00
Juan Castillo 540a5ba8d9 Fix SP804 delay timer on FVP
This patch fixes several issues with the SP804 delay timer on FVP:

* By default, the SP804 dual timer on FVP runs at 32 KHz. In order
  to run the timer at 35 MHz (as specified in the FVP user manual)
  the Overwrite bit in the SP810 control register must be set.

* The CLKMULT and CLKDIV definitions are mixed up:

      delta(us) = delta(ticks) * T(us) = delta(ticks) / f(MHz)

  From the delay function:

      delta_us = (delta * ops->clk_mult) / ops->clk_div;

  Matching both expressions:

      1 / f(MHz) = ops->clk_mult / ops->clk_div

  And consequently:

      f(MHz) = ops->clk_div / ops->clk_mult

  Which, for a 35 MHz timer, translates to:

      ops->clk_div = 35
      ops->clk_mult = 1

* The comment in the delay timer header file has been corrected:
  The ratio of the multiplier and the divider is the clock period
  in microseconds, not the frequency.

Change-Id: Iffd5ce0a5a28fa47c0720c0336d81b678ff8fdf1
2015-12-04 10:23:33 +00:00
Juan Castillo 7b4c140514 TBB: add Trusted Watchdog support on ARM platforms
This patch adds watchdog support on ARM platforms (FVP and Juno).
A secure instance of SP805 is used as Trusted Watchdog. It is
entirely managed in BL1, being enabled in the early platform setup
hook and disabled in the exit hook. By default, the watchdog is
enabled in every build (even when TBB is disabled).

A new ARM platform specific build option `ARM_DISABLE_TRUSTED_WDOG`
has been introduced to allow the user to disable the watchdog at
build time. This feature may be used for testing or debugging
purposes.

Specific error handlers for Juno and FVP are also provided in this
patch. These handlers will be called after an image load or
authentication error. On FVP, the Table of Contents (ToC) in the FIP
is erased. On Juno, the corresponding error code is stored in the
V2M Non-Volatile flags register. In both cases, the CPU spins until
a watchdog reset is generated after 256 seconds (as specified in
the TBBR document).

Change-Id: I9ca11dcb0fe15af5dbc5407ab3cf05add962f4b4
2015-12-02 13:54:35 +00:00
Juan Castillo 9784dbda11 Add basic NOR flash driver for ARM platforms
FVP and Juno platforms include a NOR flash memory to store and
load the FIP, the kernel or a ramdisk. This NOR flash is arranged
as 2 x 16 bit flash devices and can be programmed using CFI
standard commands.

This patch provides a basic API to write single 32 bit words of
data into the NOR flash. Functions to lock/unlock blocks against
erase or write operations are also provided.

Change-Id: I1da7ad3105b1ea409c976adc863954787cbd90d2
2015-11-27 09:34:20 +00:00