Commit Graph

184 Commits

Author SHA1 Message Date
Soby Mathew 58e946aec5 PSCI: Do psci_setup() as part of std_svc_setup()
This patch moves the invocation of `psci_setup()` from BL31 and SP_MIN
into `std_svc_setup()` as part of ARM Standard Service initialization.
This allows us to consolidate ARM Standard Service initializations which
will be added to in the future. A new function `get_arm_std_svc_args()`
is introduced to get arguments corresponding to each standard service.
This function must be implemented by the EL3 Runtime Firmware and both
SP_MIN and BL31 implement it.

Change-Id: I38e1b644f797fa4089b20574bd4a10f0419de184
2016-09-22 17:07:20 +01:00
Soby Mathew f426fc0519 PSCI: Introduce PSCI Library argument structure
This patch introduces a `psci_lib_args_t` structure which must be
passed into `psci_setup()` which is then used to initialize the PSCI
library. The `psci_lib_args_t` is a versioned structure so as to enable
compatibility checks during library initialization. Both BL31 and SP_MIN
are modified to use the new structure.

SP_MIN is also modified to add version string and build message as part
of its cold boot log just like the other BLs in Trusted Firmware.

NOTE: Please be aware that this patch modifies the prototype of
`psci_setup()`, which breaks compatibility with EL3 Runtime Firmware
(excluding BL31 and SP_MIN) integrated with the PSCI Library.

Change-Id: Ic3761db0b790760a7ad664d8a437c72ea5edbcd6
2016-09-22 17:07:20 +01:00
Soby Mathew cf0b1492ed Introduce PSCI Library Interface
This patch introduces the PSCI Library interface. The major changes
introduced are as follows:

* Earlier BL31 was responsible for Architectural initialization during cold
boot via bl31_arch_setup() whereas PSCI was responsible for the same during
warm boot. This functionality is now consolidated by the PSCI library
and it does Architectural initialization via psci_arch_setup() during both
cold and warm boots.

* Earlier the warm boot entry point was always `psci_entrypoint()`. This was
not flexible enough as a library interface. Now PSCI expects the runtime
firmware to provide the entry point via `psci_setup()`. A new function
`bl31_warm_entrypoint` is introduced in BL31 and the previous
`psci_entrypoint()` is deprecated.

* The `smc_helpers.h` is reorganized to separate the SMC Calling Convention
defines from the Trusted Firmware SMC helpers. The former is now in a new
header file `smcc.h` and the SMC helpers are moved to Architecture specific
header.

* The CPU context is used by PSCI for context initialization and
restoration after power down (PSCI Context). It is also used by BL31 for SMC
handling and context management during Normal-Secure world switch (SMC
Context). The `psci_smc_handler()` interface is redefined to not use SMC
helper macros thus enabling to decouple the PSCI context from EL3 runtime
firmware SMC context. This enables PSCI to be integrated with other runtime
firmware using a different SMC context.

NOTE: With this patch the architectural setup done in `bl31_arch_setup()`
is done as part of `psci_setup()` and hence `bl31_platform_setup()` will be
invoked prior to architectural setup. It is highly unlikely that the platform
setup will depend on architectural setup and cause any failure. Please be
be aware of this change in sequence.

Change-Id: I7f497a08d33be234bbb822c28146250cb20dab73
2016-07-19 10:19:01 +01:00
Soby Mathew 532ed61838 Introduce `el3_runtime` and `PSCI` libraries
This patch moves the PSCI services and BL31 frameworks like context
management and per-cpu data into new library components `PSCI` and
`el3_runtime` respectively. This enables PSCI to be built independently from
BL31. A new `psci_lib.mk` makefile is introduced which adds the relevant
PSCI library sources and gets included by `bl31.mk`. Other changes which
are done as part of this patch are:

* The runtime services framework is now moved to the `common/` folder to
  enable reuse.
* The `asm_macros.S` and `assert_macros.S` helpers are moved to architecture
  specific folder.
* The `plat_psci_common.c` is moved from the `plat/common/aarch64/` folder
  to `plat/common` folder. The original file location now has a stub which
  just includes the file from new location to maintain platform compatibility.

Most of the changes wouldn't affect platform builds as they just involve
changes to the generic bl1.mk and bl31.mk makefiles.

NOTE: THE `plat_psci_common.c` FILE HAS MOVED LOCATION AND THE STUB FILE AT
THE ORIGINAL LOCATION IS NOW DEPRECATED. PLATFORMS SHOULD MODIFY THEIR
MAKEFILES TO INCLUDE THE FILE FROM THE NEW LOCATION.

Change-Id: I6bd87d5b59424995c6a65ef8076d4fda91ad5e86
2016-07-18 17:52:15 +01:00
Soby Mathew 4c0d039076 Rework type usage in Trusted Firmware
This patch reworks type usage in generic code, drivers and ARM platform files
to make it more portable. The major changes done with respect to
type usage are as listed below:

* Use uintptr_t for storing address instead of uint64_t or unsigned long.
* Review usage of unsigned long as it can no longer be assumed to be 64 bit.
* Use u_register_t for register values whose width varies depending on
  whether AArch64 or AArch32.
* Use generic C types where-ever possible.

In addition to the above changes, this patch also modifies format specifiers
in print invocations so that they are AArch64/AArch32 agnostic. Only files
related to upcoming feature development have been reworked.

Change-Id: I9f8c78347c5a52ba7027ff389791f1dad63ee5f8
2016-07-18 17:52:15 +01:00
Sandrine Bailleux 5d1c104f9a Introduce SEPARATE_CODE_AND_RODATA build flag
At the moment, all BL images share a similar memory layout: they start
with their code section, followed by their read-only data section.
The two sections are contiguous in memory. Therefore, the end of the
code section and the beginning of the read-only data one might share
a memory page. This forces both to be mapped with the same memory
attributes. As the code needs to be executable, this means that the
read-only data stored on the same memory page as the code are
executable as well. This could potentially be exploited as part of
a security attack.

This patch introduces a new build flag called
SEPARATE_CODE_AND_RODATA, which isolates the code and read-only data
on separate memory pages. This in turn allows independent control of
the access permissions for the code and read-only data.

This has an impact on memory footprint, as padding bytes need to be
introduced between the code and read-only data to ensure the
segragation of the two. To limit the memory cost, the memory layout
of the read-only section has been changed in this case.

 - When SEPARATE_CODE_AND_RODATA=0, the layout is unchanged, i.e.
   the read-only section still looks like this (padding omitted):

   |        ...        |
   +-------------------+
   | Exception vectors |
   +-------------------+
   |  Read-only data   |
   +-------------------+
   |       Code        |
   +-------------------+ BLx_BASE

   In this case, the linker script provides the limits of the whole
   read-only section.

 - When SEPARATE_CODE_AND_RODATA=1, the exception vectors and
   read-only data are swapped, such that the code and exception
   vectors are contiguous, followed by the read-only data. This
   gives the following new layout (padding omitted):

   |        ...        |
   +-------------------+
   |  Read-only data   |
   +-------------------+
   | Exception vectors |
   +-------------------+
   |       Code        |
   +-------------------+ BLx_BASE

   In this case, the linker script now exports 2 sets of addresses
   instead: the limits of the code and the limits of the read-only
   data. Refer to the Firmware Design guide for more details. This
   provides platform code with a finer-grained view of the image
   layout and allows it to map these 2 regions with the appropriate
   access permissions.

Note that SEPARATE_CODE_AND_RODATA applies to all BL images.

Change-Id: I936cf80164f6b66b6ad52b8edacadc532c935a49
2016-07-08 14:55:11 +01:00
Yatharth Kochar 170fb93dec Add optional PSCI STAT residency & count functions
This patch adds following optional PSCI STAT functions:

- PSCI_STAT_RESIDENCY: This call returns the amount of time spent
  in power_state in microseconds, by the node represented by the
  `target_cpu` and the highest level of `power_state`.

- PSCI_STAT_COUNT: This call returns the number of times a
  `power_state` has been used by the node represented by the
  `target_cpu` and the highest power level of `power_state`.

These APIs provides residency statistics for power states that has
been used by the platform. They are implemented according to v1.0
of the PSCI specification.

By default this optional feature is disabled in the PSCI
implementation. To enable it, set the boolean flag
`ENABLE_PSCI_STAT` to 1. This also sets `ENABLE_PMF` to 1.

Change-Id: Ie62e9d37d6d416ccb1813acd7f616d1ddd3e8aff
2016-06-16 08:55:00 +01:00
Yatharth Kochar a31d8983f4 Add Performance Measurement Framework(PMF)
This patch adds Performance Measurement Framework(PMF) in the
ARM Trusted Firmware. PMF is implemented as a library and the
SMC interface is provided through ARM SiP service.

The PMF provides capturing, storing, dumping and retrieving the
time-stamps, by enabling the development of services by different
providers, that can be easily integrated into ARM Trusted Firmware.
The PMF capture and retrieval APIs can also do appropriate cache
maintenance operations to the timestamp memory when the caller
indicates so.

`pmf_main.c` consists of core functions that implement service
registration, initialization, storing, dumping and retrieving
the time-stamp.
`pmf_smc.c` consists SMC handling for registered PMF services.
`pmf.h` consists of the macros that can be used by the PMF service
providers to register service and declare time-stamp functions.
`pmf_helpers.h` consists of internal macros that are used by `pmf.h`

By default this feature is disabled in the ARM trusted firmware.
To enable it set the boolean flag `ENABLE_PMF` to 1.

NOTE: The caller is responsible for specifying the appropriate cache
maintenance flags and for acquiring/releasing appropriate locks
before/after capturing/retrieving the time-stamps.

Change-Id: Ib45219ac07c2a81b9726ef6bd9c190cc55e81854
2016-06-16 08:31:42 +01:00
danh-arm 8d8c61ea75 Merge pull request #636 from soby-mathew/sm/cpu_ctx_rem_aarch32_regs
Build option to include AArch32 registers in cpu context
2016-06-03 15:12:37 +01:00
Soby Mathew 8cd16e6b5b Build option to include AArch32 registers in cpu context
The system registers that are saved and restored in CPU context include
AArch32 systems registers like SPSR_ABT, SPSR_UND, SPSR_IRQ, SPSR_FIQ,
DACR32_EL2, IFSR32_EL2 and FPEXC32_EL2. Accessing these registers on an
AArch64-only (i.e. on hardware that does not implement AArch32, or at
least not at EL1 and higher ELs) platform leads to an exception. This patch
introduces the build option `CTX_INCLUDE_AARCH32_REGS` to specify whether to
include these AArch32 systems registers in the cpu context or not. By default
this build option is set to 1 to ensure compatibility. AArch64-only platforms
must set it to 0. A runtime check is added in BL1 and BL31 cold boot path to
verify this.

Fixes ARM-software/tf-issues#386

Change-Id: I720cdbd7ed7f7d8516635a2ec80d025f478b95ee
2016-06-03 10:50:52 +01:00
Sandrine Bailleux e0ae9fab61 Introduce some helper macros for exception vectors
This patch introduces some assembler macros to simplify the
declaration of the exception vectors. It abstracts the section
the exception code is put into as well as the alignments
constraints mandated by the ARMv8 architecture. For all TF images,
the exception code has been updated to make use of these macros.

This patch also updates some invalid comments in the exception
vector code.

Change-Id: I35737b8f1c8c24b6da89b0a954c8152a4096fa95
2016-05-26 17:04:39 +01:00
Antonio Nino Diaz d44863910c Add 32 bit version of plat_get_syscnt_freq
Added plat_get_syscnt_freq2, which is a 32 bit variant of the 64 bit
plat_get_syscnt_freq. The old one has been flagged as deprecated.
Common code has been updated to use this new version. Porting guide
has been updated.

Change-Id: I9e913544926c418970972bfe7d81ee88b4da837e
2016-05-20 15:29:03 +01:00
Gerald Lejeune 9ff67fa6f2 Dump platform-defined regs in crash reporting
It is up to the platform to implement the new plat_crash_print_regs macro to
report all relevant platform registers helpful for troubleshooting.

plat_crash_print_regs merges or calls previously defined plat_print_gic_regs
and plat_print_interconnect_regs macros for each existing platforms.

NOTE: THIS COMMIT REQUIRES ALL PLATFORMS THAT ENABLE THE `CRASH_REPORTING`
BUILD FLAG TO MIGRATE TO USE THE NEW `plat_crash_print_regs()` MACRO. BY
DEFAULT, `CRASH_REPORTING` IS ENABLED IN DEBUG BUILDS FOR ALL PLATFORMS.

Fixes: arm-software/tf-issues#373

Signed-off-by: Gerald Lejeune <gerald.lejeune@st.com>
2016-04-14 17:50:22 +02:00
Gerald Lejeune 6b836cf988 Add ISR_EL1 to crash report
Bring ISR bits definition as a mnemonic for troublershooters as well.

Signed-off-by: Gerald Lejeune <gerald.lejeune@st.com>
2016-03-30 17:32:13 +02:00
Gerald Lejeune adb4fcfb4c Enable asynchronous abort exceptions during boot
Asynchronous abort exceptions generated by the platform during cold boot are
not taken in EL3 unless SCR_EL3.EA is set.

Therefore EA bit is set along with RES1 bits in early BL1 and BL31 architecture
initialisation. Further write accesses to SCR_EL3 preserve these bits during
cold boot.

A build flag controls SCR_EL3.EA value to keep asynchronous abort exceptions
being trapped by EL3 after cold boot or not.

For further reference SError Interrupts are also known as asynchronous external
aborts.

On Cortex-A53 revisions below r0p2, asynchronous abort exceptions are taken in
EL3 whatever the SCR_EL3.EA value is.

Fixes arm-software/tf-issues#368

Signed-off-by: Gerald Lejeune <gerald.lejeune@st.com>
2016-03-30 17:26:23 +02:00
Antonio Nino Diaz 1c3ea103d2 Remove all non-configurable dead loops
Added a new platform porting function plat_panic_handler, to allow
platforms to handle unexpected error situations. It must be
implemented in assembly as it may be called before the C environment
is initialized. A default implementation is provided, which simply
spins.

Corrected all dead loops in generic code to call this function
instead. This includes the dead loop that occurs at the end of the
call to panic().

All unnecesary wfis from bl32/tsp/aarch64/tsp_exceptions.S have
been removed.

Change-Id: I67cb85f6112fa8e77bd62f5718efcef4173d8134
2016-03-14 16:41:18 +00:00
Antonio Nino Diaz f0dd061ae6 Add support for %p in tf_printf()
This patch adds support for the `%p` format specifier in tf_printf()
following the example of the printf implementation of the stdlib used
in the trusted firmware.

Fixes ARM-software/tf-issues#292

Change-Id: I0b3230c783f735d3e039be25a9405f00023420da
2016-02-18 09:45:39 +00:00
Sandrine Bailleux 1645d3ee60 Miscellaneous doc fixes for v1.2
Change-Id: I6f49bd779f2a4d577c6443dd160290656cdbc59b
2015-12-21 18:10:12 +00:00
Juan Castillo d178637d2b Remove dashes from image names: 'BL3-x' --> 'BL3x'
This patch removes the dash character from the image name, to
follow the image terminology in the Trusted Firmware Wiki page:

    https://github.com/ARM-software/arm-trusted-firmware/wiki

Changes apply to output messages, comments and documentation.

non-ARM platform files have been left unmodified.

Change-Id: Ic2a99be4ed929d52afbeb27ac765ceffce46ed76
2015-12-14 12:31:37 +00:00
danh-arm 7ee2b8b3f8 Merge pull request #462 from soby-mathew/sm/runtime_console
Enable BL31 to configure a runtime console
2015-12-09 19:03:06 +00:00
Yatharth Kochar bbf8f6f95b Move context management code to common location
The upcoming Firmware Update feature needs transitioning across
Secure/Normal worlds to complete the FWU process and hence requires
context management code to perform this task.

Currently context management code is part of BL31 stage only.
This patch moves the code from (include)/bl31 to (include)/common.
Some function declarations/definitions and macros have also moved
to different files to help code sharing.

Change-Id: I3858b08aecdb76d390765ab2b099f457873f7b0c
2015-12-09 17:41:18 +00:00
Soby Mathew 78e6161373 Ensure BL31 does not print to boot console by default
It is not ideal for BL31 to continue to use boot console at
runtime which could be potentially uninitialized. This patch
introduces a new optional platform porting API
`bl31_plat_runtime_setup()` which allows the platform to perform
any BL31 runtime setup just prior to BL31 exit during cold boot.
The default weak implementation of this function will invoke
`console_uninit()` which will suppress any BL31 runtime logs.

On the ARM Standard platforms, there is an anomaly that
the boot console will be reinitialized on resumption from
system suspend in `arm_system_pwr_domain_resume()`. This
will be resolved in the following patch.

NOTE: The default weak definition of `bl31_plat_runtime_setup()`
disables the BL31 console. To print the BL31 runtime
messages, platforms must override this API and initialize a
runtime console.

Fixes ARM-software/tf-issues#328

Change-Id: Ibaf8346fcceb447fe1a5674094c9f8eb4c09ac4a
2015-12-09 16:38:29 +00:00
danh-arm e4d3c51ddd Merge pull request #460 from sandrine-bailleux/sb/init-vttbrel2-vmid
Initialize VTTBR_EL2 when bypassing EL2
2015-12-09 15:16:08 +00:00
Sandrine Bailleux 85d80e5578 Initialize VTTBR_EL2 when bypassing EL2
In the situation that EL1 is selected as the exception level for the
next image upon BL31 exit for a processor that supports EL2, the
context management code must configure all essential EL2 register
state to ensure correct execution of EL1.

VTTBR_EL2 should be part of this set of EL2 registers because:
 - The ARMv8-A architecture does not define a reset value for this
   register.
 - Cache maintenance operations depend on VTTBR_EL2.VMID even when
   non-secure EL1&0 stage 2 address translation are disabled.

This patch initializes the VTTBR_EL2 register to 0 when bypassing EL2
to address this issue. Note that this bug has not yet manifested
itself on FVP or Juno because VTTBR_EL2.VMID resets to 0 on the
Cortex-A53 and Cortex-A57.

Change-Id: I58ce2d16a71687126f437577a506d93cb5eecf33
2015-12-09 11:34:10 +00:00
danh-arm c748896674 Merge pull request #457 from soby-mathew/sm/fix_fpregs_restore
Fix issue in Floating point register restore
2015-12-09 11:27:12 +00:00
Soby Mathew 817ac8d19b Fix issue in Floating point register restore
The `fpregs_context_restore()` function used to restore the floating point
regsiter context had a typo error wherein it was doing `str` instead of
`ldr` for a register. This issue remained undetected becuase none of the ARM
Standard development platforms save and restore the floating point register
context when a context switch is done. This patch corrects the issue.

Change-Id: Id178e0ba254a5e0a4a844f54b39d71dc34e0f6ea
2015-12-09 10:37:53 +00:00
Soby Mathew 4e0e0f44f1 Enable support for EL3 interrupt in IMF
This patch enables support for EL3 interrupts in the Interrupt Management
Framework (IMF) of ARM Trusted Firmware. Please note that although the
registration of the EL3 interrupt type is now supported, it has not been
tested on any of the ARM Standard platforms.

Change-Id: If4dcdc7584621522a2f3ea13ea9b1ad0a76bb8a1
2015-12-09 09:58:17 +00:00
danh-arm 712038db83 Merge pull request #443 from achingupta/sb/el3_payloads-cb_single_cpu
Add support to boot EL3 payloads and only a single CPU at cold reset
2015-12-01 19:02:24 +00:00
Sandrine Bailleux a9bec67dfd Introduce COLD_BOOT_SINGLE_CPU build option
This patch introduces a new build option named COLD_BOOT_SINGLE_CPU,
which allows platforms that only release a single CPU out of reset to
slightly optimise their cold boot code, both in terms of code size
and performance.

COLD_BOOT_SINGLE_CPU defaults to 0, which assumes that the platform
may release several CPUs out of reset. In this case, the cold reset
code needs to coordinate all CPUs via the usual primary/secondary
CPU distinction.

If a platform guarantees that only a single CPU will ever be released
out of reset, there is no need to arbitrate execution ; the notion of
primary and secondary CPUs itself no longer exists. Such platforms
may set COLD_BOOT_SINGLE_CPU to 1 in order to compile out the
primary/secondary CPU identification in the cold reset code.

All ARM standard platforms can release several CPUs out of reset
so they use COLD_BOOT_SINGLE_CPU=0. However, on CSS platforms like
Juno, bringing up more than one CPU at reset should only be attempted
when booting an EL3 payload, as it is not fully supported in the
normal boot flow.

For platforms using COLD_BOOT_SINGLE_CPU=1, the following 2 platform
APIs become optional:
  - plat_secondary_cold_boot_setup();
  - plat_is_my_cpu_primary().
The Porting Guide has been updated to reflect that.

User Guide updated as well.

Change-Id: Ic5b474e61b7aec1377d1e0b6925d17dfc376c46b
2015-11-26 21:32:38 +00:00
Soby Mathew 5471841870 Remove the IMF_READ_INTERRUPT_ID build option
The IMF_READ_INTERRUPT_ID build option enables a feature where the interrupt
ID of the highest priority pending interrupt is passed as a parameter to the
interrupt handler registered for that type of interrupt. This additional read
of highest pending interrupt id from GIC is problematic as it is possible that
the original interrupt may get deasserted and another interrupt of different
type maybe become the highest pending interrupt. Hence it is safer to prevent
such behaviour by removing the IMF_READ_INTERRUPT_ID build option.

The `id` parameter of the interrupt handler `interrupt_type_handler_t` is
now made a reserved parameter with this patch. It will always contain
INTR_ID_UNAVAILABLE.

Fixes ARM-software/tf-issues#307

Change-Id: I2173aae1dd37edad7ba6bdfb1a99868635fa34de
2015-11-26 17:07:32 +00:00
Soby Mathew 7a24cba5c2 Replace build macro WARN_DEPRECATED with ERROR_DEPRECATED
This patch changes the build time behaviour when using deprecated API within
Trusted Firmware. Previously the use of deprecated APIs would only trigger a
build warning (which was always treated as a build error), when
WARN_DEPRECATED = 1. Now, the use of deprecated C declarations will always
trigger a build time warning. Whether this warning is treated as error or not
is determined by the build flag ERROR_DEPRECATED which is disabled by default.
When the build flag ERROR_DEPRECATED=1, the invocation of deprecated API or
inclusion of deprecated headers will result in a build error.

Also the deprecated context management helpers in context_mgmt.c are now
conditionally compiled depending on the value of ERROR_DEPRECATED flag
so that the APIs themselves do not result in a build error when the
ERROR_DEPRECATED flag is set.

NOTE: Build systems that use the macro WARN_DEPRECATED must migrate to
using ERROR_DEPRECATED, otherwise deprecated API usage will no longer
trigger a build error.

Change-Id: I843bceef6bde979af7e9b51dddf861035ec7965a
2015-11-24 11:15:41 +00:00
Achin Gupta 613b7e5e7e Merge pull request #424 from jcastillo-arm/jc/tf-issues/327
IMF: postpone SCR_EL3 update if context is not initialized
2015-11-10 13:46:00 +00:00
Juan Castillo 5c943f7f4d IMF: postpone SCR_EL3 update if context is not initialized
The set_routing_model() function in the Interrupt Management
Framework calls the context management library to update the
SCR_EL3 register. This context management library assumes that
the context has been previously initialized. Consequently, if
a Secure Payload Dispatcher (SPD) tries to set the routing model
before initializing the context, the system will fail (in debug
mode, an assertion will be raised).

This patch fixes the issue by checking if the context has been
initialized before updating SCR_EL3. If a valid context is not
available, SCR_EL3 update will be done when the SPD calls the
context initialization function. This function will call
get_scr_el3_from_routing_model() to obtain the SCR_EL3 value.
If the SPD does not call the context initialization function
then it is SPD's responsibility to obtain SCR_EL3 from the IMF
and update the context accordingly.

Fixes ARM-software/tf-issues#327

Change-Id: Ic2f1c6e899e578a8db858ec43747c63a8539c16f
2015-11-05 16:36:55 +00:00
Sandrine Bailleux 68a68c925f Introduce print_entry_point_info() function
This patch introduces a new function called 'print_entry_point_info'
that prints an entry_point_t structure for debugging purposes.
As such, it can be used to display the entry point address, SPSR and
arguments passed from a firmware image to the next one.

This function is now called in the following images transitions:
 - BL1 to BL2
 - BL1 to BL31
 - BL31 to the next image (typically BL32 or BL33)

The following changes have been introduced:

 - Fix the output format of the SPSR value : SPSR is a 32-bit value,
   not a 64-bit one.

 - Print all arguments values.
   The entry_point_info_t structure allows to pass up to 8 arguments.
   In most cases, only the first 2 arguments were printed.
   print_entry_point_info() now prints all of them as 'VERBOSE'
   traces.

Change-Id: Ieb384bffaa7849e6cb95a01a47c0b7fc2308653a
2015-11-02 09:23:05 +00:00
Vikram Kanigiri 7173f5f618 Fix relocation of __PERCPU_BAKERY_LOCK_SIZE__
When a platform port does not define PLAT_PERCPU_BAKERY_LOCK_SIZE, the total
memory that should be allocated per-cpu to accommodate all bakery locks is
calculated by the linker in bl31.ld.S. The linker stores this value in the
__PERCPU_BAKERY_LOCK_SIZE__ linker symbol. The runtime value of this symbol is
different from the link time value as the symbol is relocated into the current
section (.bss). This patch fixes this issue by marking the symbol as ABSOLUTE
which allows it to retain its correct value even at runtime.

The description of PLAT_PERCPU_BAKERY_LOCK_SIZE in the porting-guide.md has been
made clearer as well.

Change-Id: Ia0cfd42f51deaf739d792297e60cad5c6e6e610b
2015-09-25 16:35:10 +01:00
Achin Gupta 54dc71e7ec Make generic code work in presence of system caches
On the ARMv8 architecture, cache maintenance operations by set/way on the last
level of integrated cache do not affect the system cache. This means that such a
flush or clean operation could result in the data being pushed out to the system
cache rather than main memory. Another CPU could access this data before it
enables its data cache or MMU. Such accesses could be serviced from the main
memory instead of the system cache. If the data in the sysem cache has not yet
been flushed or evicted to main memory then there could be a loss of
coherency. The only mechanism to guarantee that the main memory will be updated
is to use cache maintenance operations to the PoC by MVA(See section D3.4.11
(System level caches) of ARMv8-A Reference Manual (Issue A.g/ARM DDI0487A.G).

This patch removes the reliance of Trusted Firmware on the flush by set/way
operation to ensure visibility of data in the main memory. Cache maintenance
operations by MVA are now used instead. The following are the broad category of
changes:

1. The RW areas of BL2/BL31/BL32 are invalidated by MVA before the C runtime is
   initialised. This ensures that any stale cache lines at any level of cache
   are removed.

2. Updates to global data in runtime firmware (BL31) by the primary CPU are made
   visible to secondary CPUs using a cache clean operation by MVA.

3. Cache maintenance by set/way operations are only used prior to power down.

NOTE: NON-UPSTREAM TRUSTED FIRMWARE CODE SHOULD MAKE EQUIVALENT CHANGES IN
ORDER TO FUNCTION CORRECTLY ON PLATFORMS WITH SUPPORT FOR SYSTEM CACHES.

Fixes ARM-software/tf-issues#205

Change-Id: I64f1b398de0432813a0e0881d70f8337681f6e9a
2015-09-14 22:09:40 +01:00
Andrew Thoelke ee7b35c4e1 Re-design bakery lock memory allocation and algorithm
This patch unifies the bakery lock api's across coherent and normal
memory implementation of locks by using same data type `bakery_lock_t`
and similar arguments to functions.

A separate section `bakery_lock` has been created and used to allocate
memory for bakery locks using `DEFINE_BAKERY_LOCK`. When locks are
allocated in normal memory, each lock for a core has to spread
across multiple cache lines. By using the total size allocated in a
separate cache line for a single core at compile time, the memory for
other core locks is allocated at link time by multiplying the single
core locks size with (PLATFORM_CORE_COUNT - 1). The normal memory lock
algorithm now uses lock address instead of the `id` in the per_cpu_data.
For locks allocated in coherent memory, it moves locks from
tzfw_coherent_memory to bakery_lock section.

The bakery locks are allocated as part of bss or in coherent memory
depending on usage of coherent memory. Both these regions are
initialised to zero as part of run_time_init before locks are used.
Hence, bakery_lock_init() is made an empty function as the lock memory
is already initialised to zero.

The above design lead to the removal of psci bakery locks from
non_cpu_power_pd_node to psci_locks.

NOTE: THE BAKERY LOCK API WHEN USE_COHERENT_MEM IS NOT SET HAS CHANGED.
THIS IS A BREAKING CHANGE FOR ALL PLATFORM PORTS THAT ALLOCATE BAKERY
LOCKS IN NORMAL MEMORY.

Change-Id: Ic3751c0066b8032dcbf9d88f1d4dc73d15f61d8b
2015-09-11 16:19:21 +01:00
Soby Mathew 85a181ce38 PSCI: Migrate TF to the new platform API and CM helpers
This patch migrates the rest of Trusted Firmware excluding Secure Payload and
the dispatchers to the new platform and context management API. The per-cpu
data framework APIs which took MPIDRs as their arguments are deleted and only
the ones which take core index as parameter are retained.

Change-Id: I839d05ad995df34d2163a1cfed6baa768a5a595d
2015-08-13 23:48:06 +01:00
Soby Mathew 674878464a PSCI: Switch to the new PSCI frameworks
This commit does the switch to the new PSCI framework implementation replacing
the existing files in PSCI folder with the ones in PSCI1.0 folder. The
corresponding makefiles are modified as required for the new implementation.
The platform.h header file is also is switched to the new one
as required by the new frameworks. The build flag ENABLE_PLAT_COMPAT defaults
to 1 to enable compatibility layer which let the existing platform ports to
continue to build and run with minimal changes.

The default weak implementation of platform_get_core_pos() is now removed from
platform_helpers.S and is provided by the compatibility layer.

Note: The Secure Payloads and their dispatchers still use the old platform
and framework APIs and hence it is expected that the ENABLE_PLAT_COMPAT build
flag will remain enabled in subsequent patch. The compatibility for SPDs using
the older APIs on platforms migrated to the new APIs will be added in the
following patch.

Change-Id: I18c51b3a085b564aa05fdd98d11c9f3335712719
2015-08-13 23:47:57 +01:00
Soby Mathew 12d0d00d1e PSCI: Introduce new platform and CM helper APIs
This patch introduces new platform APIs and context management helper APIs
to support the new topology framework based on linear core position. This
framework will be introduced in the follwoing patch and it removes the
assumption that the MPIDR based affinity levels map directly to levels
in a power domain tree. The new platforms APIs and context management
helpers based on core position are as described below:

* plat_my_core_pos() and plat_core_pos_by_mpidr()

These 2 new mandatory platform APIs are meant to replace the existing
'platform_get_core_pos()' API. The 'plat_my_core_pos()' API returns the
linear index of the calling core and 'plat_core_pos_by_mpidr()' returns
the linear index of a core specified by its MPIDR. The latter API will also
validate the MPIDR passed as an argument and will return an error code (-1)
if an invalid MPIDR is passed as the argument. This enables the caller to
safely convert an MPIDR of another core to its linear index without querying
the PSCI topology tree e.g. during a call to PSCI CPU_ON.

Since the 'plat_core_pos_by_mpidr()' API verifies an MPIDR, which is always
platform specific, it is no longer possible to maintain a default implementation
of this API. Also it might not be possible for a platform port to verify an
MPIDR before the C runtime has been setup or the topology has been initialized.
This would prevent 'plat_core_pos_by_mpidr()' from being callable prior to
topology setup. As a result, the generic Trusted Firmware code does not call
this API before the topology setup has been done.

The 'plat_my_core_pos' API should be able to run without a C runtime.
Since this API needs to return a core position which is equal to the one
returned by 'plat_core_pos_by_mpidr()' API for the corresponding MPIDR,
this too cannot have default implementation and is a mandatory API for
platform ports. These APIs will be implemented by the ARM reference platform
ports later in the patch stack.

* plat_get_my_stack() and plat_set_my_stack()

These APIs are the stack management APIs which set/return stack addresses
appropriate for the calling core. These replace the 'platform_get_stack()' and
'platform_set_stack()' APIs. A default weak MP version and a global UP version
of these APIs are provided for the platforms.

* Context management helpers based on linear core position

A set of new context management(CM) helpers viz cm_get_context_by_index(),
cm_set_context_by_index(), cm_init_my_context() and cm_init_context_by_index()
are defined which are meant to replace the old helpers which took MPIDR
as argument. The old CM helpers are implemented based on the new helpers to
allow for code consolidation and will be deprecated once the switch to the new
framework is done.

Change-Id: I89758632b370c2812973a4b2efdd9b81a41f9b69
2015-08-13 16:17:58 +01:00
danh-arm e347e843a9 Merge pull request #310 from sandrine-bailleux/sb/tf-issue-304-phase1
Enhance BL3-1 entrypoint handling to support non-TF boot firmware - Phase 1
2015-06-24 11:23:33 +01:00
Sandrine Bailleux bf031bba2b Introduce PROGRAMMABLE_RESET_ADDRESS build option
This patch introduces a new platform build option, called
PROGRAMMABLE_RESET_ADDRESS, which tells whether the platform has
a programmable or fixed reset vector address.

If the reset vector address is fixed then the code relies on the
platform_get_entrypoint() mailbox mechanism to figure out where
it is supposed to jump. On the other hand, if it is programmable
then it is assumed that the platform code will program directly
the right address into the RVBAR register (instead of using the
mailbox redirection) so the mailbox is ignored in this case.

Change-Id: If59c3b11fb1f692976e1d8b96c7e2da0ebfba308
2015-06-04 11:38:58 +01:00
Sandrine Bailleux 52010cc779 Rationalize reset handling code
The attempt to run the CPU reset code as soon as possible after reset
results in highly complex conditional code relating to the
RESET_TO_BL31 option.

This patch relaxes this requirement a little. In the BL1, BL3-1 and
PSCI entrypoints code, the sequence of operations is now as follows:
 1) Detect whether it is a cold or warm boot;
 2) For cold boot, detect whether it is the primary or a secondary
    CPU. This is needed to handle multiple CPUs entering cold reset
    simultaneously;
 3) Run the CPU init code.

This patch also abstracts the EL3 registers initialisation done by
the BL1, BL3-1 and PSCI entrypoints into common code.

This improves code re-use and consolidates the code flows for
different types of systems.

NOTE: THE FUNCTION plat_secondary_cold_boot() IS NOW EXPECTED TO
NEVER RETURN. THIS PATCH FORCES PLATFORM PORTS THAT RELIED ON THE
FORMER RETRY LOOP AT THE CALL SITE TO MODIFY THEIR IMPLEMENTATION.
OTHERWISE, SECONDARY CPUS WILL PANIC.

Change-Id: If5ecd74d75bee700b1bd718d23d7556b8f863546
2015-06-04 11:38:54 +01:00
Achin Gupta 5717aae1c3 Fix handling of spurious interrupts in BL3_1
There are couple of issues with how the interrupt routing framework in BL3_1
handles spurious interrupts.

1. In the macro 'handle_interrupt_exception', if a spurious interrupt is
   detected by plat_ic_get_pending_interrupt_type(), then execution jumps to
   'interrupt_exit_\label'. This macro uses the el3_exit() function to return to
   the original exception level. el3_exit() attempts to restore the SPSR_EL3 and
   ELR_EL3 registers with values from the current CPU context. Since these
   registers were not saved in this code path, it programs stale values into
   these registers. This leads to unpredictable behaviour after the execution of
   the ERET instruction.

2. When an interrupt is routed to EL3, it could be de-asserted before the
   GICC_HPPIR is read in plat_ic_get_pending_interrupt_type(). There could be
   another interrupt pending at the same time e.g. a non-secure interrupt. Its
   type will be returned instead of the original interrupt. This would result in
   a call to get_interrupt_type_handler(). The firmware will panic if the
   handler for this type of interrupt has not been registered.

This patch fixes the first problem by saving SPSR_EL3 and ELR_EL3 early in the
'handle_interrupt_exception' macro, instead of only doing so once the validity
of the interrupt has been determined.

The second problem is fixed by returning execution back to the lower exception
level through the 'interrupt_exit_\label' label instead of treating it as an
error condition. The 'interrupt_error_\label' label has been removed since it is
no longer used.

Fixes ARM-software/tf-issues#305

Change-Id: I81c729a206d461084db501bb81b44dff435021e8
2015-05-13 18:58:58 +01:00
Kévin Petit 8b779620d3 Add support to indicate size and end of assembly functions
In order for the symbol table in the ELF file to contain the size of
functions written in assembly, it is necessary to report it to the
assembler using the .size directive.

To fulfil the above requirements, this patch introduces an 'endfunc'
macro which contains the .endfunc and .size directives. It also adds
a .func directive to the 'func' assembler macro.

The .func/.endfunc have been used so the assembler can fail if
endfunc is omitted.

Fixes ARM-Software/tf-issues#295

Change-Id: If8cb331b03d7f38fe7e3694d4de26f1075b278fc
Signed-off-by: Kévin Petit <kevin.petit@arm.com>
2015-04-08 13:02:59 +01:00
danh-arm 27bc010666 Merge pull request #268 from vikramkanigiri/vk/move_init_cpu_ops
Initialise cpu ops after enabling data cache
2015-03-17 14:23:46 +00:00
Vikram Kanigiri 12e7c4ab0b Initialise cpu ops after enabling data cache
The cpu-ops pointer was initialized before enabling the data cache in the cold
and warm boot paths. This required a DCIVAC cache maintenance operation to
invalidate any stale cache lines resident in other cpus.

This patch moves this initialization to the bl31_arch_setup() function
which is always called after the data cache and MMU has been enabled.

This change removes the need:
 1. for the DCIVAC cache maintenance operation.
 2. to initialise the CPU ops upon resumption from a PSCI CPU_SUSPEND
    call since memory contents are always preserved in this case.

Change-Id: Ibb2fa2f7460d1a1f1e721242025e382734c204c6
2015-03-13 10:38:09 +00:00
Sandrine Bailleux dad25049ce Enable type-checking of arguments passed to printf() et al.
This patch modifies the declarations of the functions printf() et al.
and adds the right GCC attribute to request the compiler to check
the type of the arguments passed to these functions against the given
format string. This will ensure that the compiler outputs warning
messages like the following whenever it detects an inconsistency:

 file.c:42: warning: format ‘%d’ expects type ‘int’, but argument 3 has type ‘long int’

It also fixes the type mismatch inconsistencies that it revealed
across the code base.

NOTE: THIS PATCH MAY FORCE PLATFORM PORTS OR SP/SPDS THAT USE THE
PRINTF FAMILY OF FUNCTIONS TO FIX ANY TYPE MISMATCH INCONSISTENCIES.

Change-Id: If36bb54ec7d6dd2cb4791d89b02a24ac13fd2df6
2015-03-06 13:07:43 +00:00
Yatharth Kochar 79a97b2ef7 Call reset handlers upon BL3-1 entry.
This patch adds support to call the reset_handler() function in BL3-1 in the
cold and warm boot paths when another Boot ROM reset_handler() has already run.

This means the BL1 and BL3-1 versions of the CPU and platform specific reset
handlers may execute different code to each other. This enables a developer to
perform additional actions or undo actions already performed during the first
call of the reset handlers e.g. apply additional errata workarounds.

Typically, the reset handler will be first called from the BL1 Boot ROM. Any
additional functionality can be added to the reset handler when it is called
from BL3-1 resident in RW memory. The constant FIRST_RESET_HANDLER_CALL is used
to identify whether this is the first version of the reset handler code to be
executed or an overridden version of the code.

The Cortex-A57 errata workarounds are applied only if they have not already been
applied.

Fixes ARM-software/tf-issue#275

Change-Id: Id295f106e4fda23d6736debdade2ac7f2a9a9053
2015-01-26 19:04:15 +00:00
Soby Mathew f4f1ae777b Demonstrate model for routing IRQs to EL3
This patch provides an option to specify a interrupt routing model
where non-secure interrupts (IRQs) are routed to EL3 instead of S-EL1.
When such an interrupt occurs, the TSPD arranges a return to
the normal world after saving any necessary context. The interrupt
routing model to route IRQs to EL3 is enabled only during STD SMC
processing. Thus the pre-emption of S-EL1 is disabled during Fast SMC
and Secure Interrupt processing.

A new build option TSPD_ROUTE_NS_INT_EL3 is introduced to change
the non secure interrupt target execution level to EL3.

Fixes ARM-software/tf-issues#225

Change-Id: Ia1e779fbbb6d627091e665c73fa6315637cfdd32
2015-01-26 15:29:32 +00:00